Using AR/VR for Assurance in Insurance

I recently watched a Netflix documentary about the Fyre Festival. Two things from the story really stuck with me: 1) Festival owner Billy McFarland failed to get festival insurance; and 2) He couldn’t (or wouldn’t) listen to reason, as multiple people told him it would be impossible to pull off such an ambitious festival in under six months. At one point, someone tried to show Billy – using a map spread out on a table – that the island venue could not accommodate the number of festivalgoers and luxury villas that had already sold. While watching, I thought about Virtual Reality, not because it’s my job but because immersive technologies might have prevented the disaster that Fyre Festival turned out to be. What if those around Billy had used VR to snap him out of his delusions? Or what if Billy had tried to get festival insurance? Might an insurance agent have used VR to “preview” the festival and ultimately denied coverage? Perhaps that would have convinced Billy to cancel the event.

The insurance industry is, in fact, exploring virtual as well as augmented reality for a number of applications, including risk assessment, accident recreation, remote claims handling, and customer education. AR/VR may also be a solution to the insurance sector’s labor concerns and the answer to rising customer experience expectations.

State of the Insurance Industry

Insurance companies are not exempt from digital disruption or the need to create a more flexible and even virtual workforce for the digital age. As some manual and traditional industry tasks become automated, insurers will need to both recruit and upgrade their talent at a time when the labor market is incredibly tight. This is especially true for the tech, data science and actuarial labor pool (Deloitte). Furthermore, employees impacted by automation as well as Baby Boomers with irreplaceable institutional knowledge will need to be repurposed, which means retraining and leveraging cutting-edge technology to facilitate remote expert mentoring of new workers.

The traditional insurer-insured relationship can be boiled down to a monthly bill or claims submission when something goes wrong; but today’s insurance customers – many of whom are millennials – want more: More convenience and more personalization in the insurance buying and claims processes. Consumers want more control over their coverage through digital channels; they want insurers to leverage advanced sensors and analytics for tracking trends and results that will lower their payments (as in auto and homeowner’s insurance), and they want more innovative and hybrid types of coverage. These and other new expectations are clashing with the long-established culture of the insurance industry, pressuring companies to look for technology that appeals to a new generation of adults seeking insurance.

Applications for AR/VR in Insurance with Real-life Use Cases

Though the insurance sector is usually slow to adopt new technology, augmented and virtual reality are beginning to show up in the ways insurers market and provide their services. Insurance companies are exploring AR/VR as part of marketing strategies, for educating clients, to estimate damage, for employee training, and more:


Customer-facing Applications:

Insurance is a large and valuable market; and with new players offering fast, efficient, digital services, it’s also a fiercely competitive one. Traditional insurers are turning to technology – both the enabler and accelerator of digital transformation – to stay relevant to a changing customer base:

Explaining Insurance Plans

AR/VR can make the complex process of buying insurance easier by simulating real-life situations to showcase the value of various life, health and other coverage plans. Far more powerful than a brochure, website or salesperson, immersive simulations can drive home the need to save for retirement, simplify pension planning, etc.

Consumer Education / Risk Mitigation

In a similar vein, AR/VR can be used to warn clients about dangers and help them prevent the need to file a claim. By allowing insurers to demonstrate both common and exceptional risks in a virtual, risk-free environment, immersive simulations can improve the safety practices of different types of policyholders. For instance, doctors could use VR to practice on a new machine before using it with real patients, employees could learn to identify workplace risks, and homeowners could learn to prevent floods and fires.

Insurers are also toying with VR incident management and training programs that would give customers a fairer rate (ex. virtual driving tests for auto insurance). After successfully completing such a program, the customer would send her results to her insurance agent, verifying her enrollment and qualifying her for discounts (reduced premiums).

Marketing and Customer Engagement

With the ubiquity of AR-capable smartphones, companies today are increasingly incorporating AR into their brand apps and other marketing strategies. Insurers are no exception: AR experiences and VR simulations that create awareness about the importance of buying different types of insurance are part of new marketing and customer engagement plans. In general, insurers are looking to attract and retain new and existing customers by providing informational and entertaining content. This represents a significant move away from the usually distant or aloof position of an insurance company vis-à-vis its clients.

Customer Service

One way to improve the customer experience is to increase an organization’s operational efficiency; for instance, faster order picking in a warehouse leads to faster delivery and higher customer satisfaction. Another way is to focus on those times the customer directly interacts with the business. In insurance, these times are when a customer purchases a coverage plan, files a claim, or contacts support.

In addition to helping consumers understand insurance plans, AR/VR can provide real-time guidance to policyholders on how to fill out claim forms, resolve billing issues, and more. Some insurers are experimenting with virtual customer service (like a virtual support center) and enabling policyholders to interact with adjusters and begin documenting damage in real time through AR. Whether it’s through an individual’s mobile camera or, one day, smart glasses, adjusters can be “on the scene” with the policyholder, reviewing the damages, even taking exact measurements; allowing for faster and more accurate documentation of loss and faster case resolution.


Employee-facing or Operational Applications:

The game of insurance is about risk avoidance, the goal being to convert consumers and businesses into policyholders while driving down claims. AR/VR can be an effective tool for reaching these goals, not just through customer education but also by improving employee performance, making insurance workers shrewder and more efficient:

(Ongoing) Risk Assessment

AR/VR open a number of new capabilities for risk assessors to reduce cost and loss ratios. As mentioned above, auto insurers are considering administering virtual driving tests to determine whether someone is a safe driver before insuring them. VR is also being used to model risk: Assessors can navigate a building before it’s built, thereby improving insurance estimates, and better judge the safety of, say, a warehouse by simulating potential accidents within and evaluating the locations of exit doors and stairs. During risk inspections, assessors could use smart glasses to instantly document and record notes hands-free, and to connect with remote experts who might point out weak spots by augmenting the user’s field of view.

The Internet of Things (ex. smart automobiles, smart homes, etc.) is huge for insurance, enabling predictive analysis and preemptive actions that should reduce the number of high-frequency, low-impact claims. This paves the way for innovative insurance models, like plans that trigger based upon forecasts of loss as opposed to an actual event. Insurers might also use the wealth of data from IoT technologies along with statisticians to visualize and analyze complex data sets in a virtual setting.

Damage Estimation

Most early use cases of immersive tech in insurance come from the property and casualty side of the industry. This is because AR/VR present the ideal tool for safely recreating real-life disasters and estimating repair costs. Through the use of digital building plans and real-time sensor information overlaid on top of a damaged building, AR glasses-wearing agents can carefully review the damage on-site, doing things like seeing behind walls to determine the location of gas lines and other critical or hazardous objects.

Claims adjusters can overlay images of a building’s pre-loss condition for comparison, document damaged areas hands-free (useful for later VR accident simulations) and confer with remote experts. This makes it possible to more precisely estimate damage and process claims quicker, which, of course, pleases customers. AR glasses also allow for remote damage assessments, where an adjuster shares the view of a colleague at the incident site (wearing smart glasses) or looks through the customer’s mobile device to assess the damage without physically being there.

Remote Guidance and Employee Training

Accenture has found that 85% of insurance executives are interested in leveraging AR/VR solutions to bridge the physical and informational distance between newer and experienced employees and between agents and customers. This is especially key in the training of claims processors, who have one of the most important jobs in the industry (investigating claims). As studies show that people learn and retain information better when it’s presented in context over their real-world view, insurance employees should be able to train faster and more effectively “by doing” whether in a virtual environment or via AR-powered remote guidance on the job.

Indeed, leading insurers are finding AR/VR great for training agents at a lower cost, giving them virtual experience that raises their confidence and the accuracy of their work. Immersive training programs can also help insurance agencies prepare employees to work in specific sectors (ex. auto insurance reps learning about engine repair; home insurance reps learning about maintenance lifecycles), so they can make more informed decisions and offer policy-specific recommendations to clients. Remote technical experts might also provide a second pair of eyes, training agents in real time using AR.

Visual Claims and the Claims Process

Alluded to above is the potential for AR/VR to enhance and speed up claims processing by unlocking new methods for evaluating claims and detecting fraud in the field. With AR, multiple agents are no longer required to visit the claim site; just one employee equipped with smart glasses can go, while experts look on, inspecting damages and calculating losses remotely from the office. The time and money saved leads to greater employee efficiency and higher customer satisfaction. Customers themselves can serve in this role using an AR-enabled mobile device or perhaps smart glasses received upon purchasing a policy.

Policyholders are becoming fans of visual insurance claims, which promise more efficient claims processing and quicker payment. AR-powered video solutions can expedite claim settlements by enabling remote inspections at the First Notice of Loss and reducing adjustors’ time in the field (thereby lowering overhead). Customers can show a contact center agent the cause and extent of, say, a car crash, through a live video connection; giving the agent immediate, real-time access to information, including valuable pieces of temporary information like road conditions, vehicle position, skid marks, etc. This significantly shortens the claims process, eliminating not only the usual site visit but also any lengthy back-and-forth communication between agent and customer. The result: More accurate appraisals and faster resolution time.


Conclusion:

The transition from old industry methods to new ways of working with augmented reality will produce a more efficient and cost-effective insurance marketplace, transforming the ways agents interact with customers, enforce policies, and assess claims. Moreover, business and personal use of AR/VR technologies will open new categories of risk exposure leading to entirely new types of insurance.

Insider Secrets to Adopting Wearables

Watch this throwback 2016 expert panel led by Upskill’s Brian Ballard, in which enterprise end users from Jacobs Engineering, Powerstream Inc., the AES Corporation, and Intel share their secrets to adopting wearables. Some key insights include referring to the people closest to the problem (i.e. the workers), getting them involved early in the process and allowing them to opt in; creating a partnership between the business and IT sides of your organization; and talking to the standards bodies for your industry from the get-go. In addition, don’t underestimate the impact on your company’s infrastructure, as content and information management are key challenges in this space, especially when it comes to AR.

When is the time to talk about consumer-facing AR apps in enterprise?

The release of Magic Leap One was supposed to be the “magic moment” for consumer AR, the development that finally got consumers excited about augmented reality glasses. Needless to say, it wasn’t. Despite the billions in funding, awesome concept videos and mainstream media attention, Magic Leap did not suddenly big-bang the consumer AR market into existence with the launch of its much-hyped headset.  

Though Magic Leap the product may be “just another HoloLens” aimed at consumers; Magic Leap the company did a lot in 2018 – through strategic partnerships with AT&T, Sennheiser, and Wayfair – to impress upon consumers the potential for augmented reality beyond Google Glass and Snap filters. In addition, 2018 saw a number of relatively normal-looking smart glasses hit the market, including Focals by North and Vuzix Blade, which make a far stronger case than Google Glass did in 2013 for putting our smartphones (and AI assistants) on our faces. And just this week at CES 2019, nreal debuted colorful, 3-ounce AR glasses that look like everyday sunglasses and ThirdEye unveiled its X2 Smart Glasses, “the smallest standalone 6oz mixed reality smart glasses with built-in SLAM.”

Why should any of this matter to enterprises? Is it still too early to talk about consumer-facing AR applications in enterprise that aren’t branded mobile apps? I don’t think so. It’s possible to serve the existing enterprise market and simultaneously prepare for one that doesn’t yet exist. Today’s companies know they must prepare for a future in which augmented reality glasses are a standard tool in the workplace, even if they’re not yet deploying AR solutions; why should companies not prepare for a future in which consumers own smart glasses (or, if not own, are at least accustomed to AR in a heads-up form factor)?

Though AR Insider estimates there are only around 129 million active mobile AR users; there are nearly one billion AR-enabled smartphones around the world capable of exposing their owners to the benefits of AR. This represents a huge potential market with opportunities for new revenue streams and services in retail, travel, hospitality, airports, even field services. There are untapped applications for AR glasses in the consumer-facing aspects of business in industrial sectors, as well: Manufacturer AGCO, for instance, uses smart glasses on the plant floor and for public tours of its factories. With the number of consumer-friendly devices now (or soon-to-be) available, the time is now for organizations to begin innovating around these products in order to engage with customers in new ways, including providing pairs of smart glasses for temporary use by customers during interactions with the business.


Current Consumer AR Market:

Furniture retailers like Ikea and beauty brands like MAC are already capitalizing on AR via new try-before-you-buy features in their mobile apps. Although companies aren’t sharing the data, AR shopping experiences built with ARKit and ARCore presumably help to increase conversion rates and average order values while reducing returns. But are consumers aware that this is augmented reality? Are Snapchat users aware that AR tech powers the app’s face and world lenses? In a recent study by GlobalWebIndex, 70-75% of respondents aged 16-44 said they were aware of AR. Awareness, however, is not the same as experience: In the same survey, only 35% of 16-34s said they had experienced AR in the past month. The best way to sell immersive technology is through experience, the level of which is currently low among consumers. There have been no killer AR apps and I suspect that many smartphone users do not register that they are experiencing AR when they do. I expect this to change as AR is integrated with other everyday form factors, including car windshields and kitchen ovens.

One day, according to analysts and futurists, smart glasses are going to replace smartphones altogether, but the transition to head-worn mobile computing is proving less predictable and slower than imagined. The reality is there are a number of significant barriers to consumer smart glasses adoption as well as a number of positive signs for the future of the consumer AR market. What’s throwing us off, as Charlie Fink points out, is the comparison to smartphones, which took only two years to reach mass adoption. Charlie argues that while the iPhone was innovative it was still a mobile phone, whereas smart glasses are an entirely new product, a new purchase much like the personal computer was in its day and the Apple Watch was in 2015. The adoption factors are similar, too: Design (form), user interface (function), utility (content), enjoyment, cost, and social acceptance.

Both personal computers and smart glasses require(d) big changes in consumer behavior. Mass adoption of PCs took 15 years. I was one of the first kids in my class to have a computer at home. My father, a lawyer, had his own computer at work, so he purchased a laptop for his home office. My brothers and I played games on it (floppy disks!), leading to the purchase of a second “family” computer. Might the new wave of consumer-friendly smart glasses follow this pattern, with businessmen, designers and technologists first to adopt and convert the rest of us?


Positive signs for consumer smart glasses in 2019

Apple is very serious about augmented reality; Tim Cook calls it a “profound platform” and market researchers are predicting a release date for the company’s rumored AR glasses as early as 2020 (2022 or 2023 is more likely). Given Apple’s design cred and clout with consumers, it’s not hard to imagine Apple being the first to come out with sleek smart glasses that look no different from regular glasses and offer enough style and functionality to make hands-free AR apps a part of everyday life. After all, the Apple Watch has made watch-wearers out of people who never used to wear a watch.

In addition to Apple’s belief in AR and the latest iPhones, which seem to be built for running AR apps, there are other positive signs for consumer augmented reality: Magic Leap is offering $500,000 grants and support to developers who build design, engineering, architecture and other creative software for its headset; and it was just announced that the company’s partnership with AT&T is expanding to include enterprise AR. AT&T has also promised nationwide 5G by 2020, which is necessary for higher quality AR experiences. I can see Magic Leap finding a niche in B2C use cases, which would increase consumer exposure to wearable AR beyond in-store retail apps and social media.

Source: Vuzix

Vuzix Blade and Focals by North are promising, as well, not only because they’re more stylish and lightweight than anything that came before but also because of popular apps like Alexa integrated with the technology. Vuzix and North have taken bold steps into the consumer market: Vuzix, for instance, was marketing Blade on Instagram and at New York Fashion Week. While the company hasn’t even cracked 1,000 followers on Instagram, it is smart to experiment on the social platform that gave rise to influencer culture and has become mandatory for brands today. Vuzix also recently partnered with AccuWeather to provide local weather information to Blade users, who can tap on the glasses or ask Alexa to bring up forecasts right in their field of view. Blade went on sale to the public earlier this month for $999, a price point that’s still too high for consumers but just right for what Vuzix calls “light enterprise” use cases.

I have to say that Focals are better looking than Blade. The cost is the same but the mainstream appeal of North’s branding, social presence, and Warby Parker-esque sales model make Focals (in my opinion) the best effort yet in consumer AR. Focals can replace one’s prescription glasses, sync with Android and iOS devices, and offer a degree of customization: Shoppers can choose between classic and round frames in black, tortoise or gray, and you have to get fitted at either North’s Brooklyn or Toronto showrooms. The integration of Uber and exclusive in-store availability are genius, yet even Focals won’t make smart glasses mainstream.


Investing in consumer-oriented devices outside the workforce

In 2017, DigitalBridge found that 56% of 18-24-year-olds would be more likely to use AR if it were offered to them via a wearable device, and 69% would be more loyal to the brand that offered this. Retailers are arguably having the most success getting smartphone owners to use AR by solving a real consumer pain point. (IKEA Place was actually the second-most downloaded ARKit app in a 2018 survey.) It seems inevitable that AR will reinvent the shopping experience, but why not also the personal banking experience or the dentist’s office, hotel, post office, etc.?

I don’t know which device will win over consumers or what the breakthrough app will be, though it will definitely be practical as opposed to a game. Nevertheless, with AR invading our cars and homes and startups introducing new consumer-friendly smart glasses, consumers should have more opportunities to experience the technology in 2019. Businesses that regularly interact with consumers don’t have to wait for smart glasses to completely usurp smartphones to begin benefiting from consumer-facing applications of devices like Blade. My prediction is that 2019 will be the year of light enterprise use cases, with companies purchasing early consumer smart glasses for employees to interact face-to-face with end customers and for consumers to use in places of business.

It’s telling that one of the very first use cases of Google Glass involved Virgin Airlines staff processing first-class passengers for their flights and that every automotive manufacturer seems to be experimenting with “loaning” AR headsets to shoppers in dealerships. There is ROI in businesses investing in consumer smart glasses if it solves a customer problem or improves customers’ interactions with the business. The other side to this is that consumers do want to try immersive technologies but they don’t want to pay for the devices right now. Here are three applications I imagine business-wide:

  • Product testing: Enabling consumers to clearly envision a product or service. Right now, mobile AR apps offer this but there hasn’t been much innovation around incorporating smart glasses into the in-person shopping experience, improving the in-store experience, and drawing customers back into stores. (Imagine entering a grocery store and grabbing both a cart and a pair of smart glasses to help you make informed decisions or being able to preview how to use a KitchenAid blender while at Bed, Bath & Beyond.)
  • Guidance and context: Showing directional information via a digital overlay in airports, malls, banks, and other large places of business. No physical signs, reduced frustration, and less pressure on employees to direct customers. Additionally, providing contextual information via digital overlay to help customers make decisions (nutrition information, product reviews, etc.) and get more out of their experience of the business.
  • Engagement: Beyond marketing gimmicks, engaging consumers to interact in new ways with products, buy more and stay longer at the business, increase brand loyalty, etc. (Imagine wearing smart glasses around a wine store to learn about where each bottle came from, hear stories about famous wine-producing regions, read reviews, etc.)

Conclusion

Personally, I’m excited about all the new consumer-friendly AR products, and not because I think they will be a hit or want to buy one myself. The arrival of products like Blade and nreal light marks an intermediate stage in consumer smart glasses adoption in which businesses provide consumers with the opportunity to use these devices risk-free in the (non-industrial) office, at stores, in office reception areas, etc. 2019 should see an expansion in enterprise use cases beyond industry into more mundane areas of business and commerce, in turn providing a much-needed push to consumer AR.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and early confirmed speakers, to come on the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, returns to Santa Clara, CA May 29-31, 2019. Join us for the biggest AWE yet and help celebrate the show’s 10th Anniversary! Apply to speak and/or exhibit at AWE 2019on the event website.

 

Image source: nreal

Challenges of Enterprise Wearables, AR and VR: A Changing Landscape, Budget, Battery, and More

In this largely Q&A-driven panel discussion from last month’s EWTS 2018, Tacit’s Todd Boyd and members of the audience question IT leaders from Worthington Industries, HB Fuller, Ford, JetBlue and The American Bureau of Shipping (ABS) on the cultural and technical challenges of adopting wearable technologies. Some of the challenges addressed include keeping people engaged, dealing with opponents and a constantly changing hardware landscape, budget and financing, battery life and back-end system integration. Watch now:

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and early confirmed speakers, to come on the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, returns to Santa Clara, CA May 29-31, 2019. Join us for the biggest AWE yet and help celebrate the show’s 10th Anniversary! Apply to speak and/or exhibit at AWE 2019on the event website.

All the News Out of EWTS 2018

The 2018 Enterprise Wearable Technology Summit took place October 9-10 at The Fairmont in Austin, TX. A number of announcements were made at the event—all great news for the future of enterprise wearable technologies. From new partnerships to global deployments, here are the developments announced at the event:

RealWear Announces That Colgate-Palmolive to Roll Out HMT-1 Hands-Free Wearable Computers to 20 Manufacturing Sites in 11 Countries

Colgate-Palmolive is rolling out RealWear’s voice-operated HMT-1 among hundreds of its mechanics and engineers across 20 of the company’s largest manufacturing facilities in 11 countries. Colgate-Palmolive employees will use the technology to receive support from remote SMEs, equipment suppliers and manufacturing teams, as well as to retrieve and capture documents and video.


Vuzix Receives M300 Follow-On Orders from SATS to Outfit Ramp Handling Operations with Smart Glasses at Changi Airport

SATS, the chief ground-handling and in-flight catering service provider at Singapore Changi Airport, began piloting the Vuzix M300 to increase accuracy and efficiency in its ramp handling operations in mid-2017. The company is now expanding its use of the technology, deploying smart glasses to over 500 employees at Changi Airport. Wearing Vuzix M300 Smart Glasses, workers will be able to receive real-time loading instructions and scan barcodes on luggage and cargo containers, hopefully reducing loading times by up to 15 minutes/flight.


Toshiba Adds Voice Commands and Enhanced Camera Capabilities to Create Vision DE Suite 2.0

Toshiba has upgraded its software engine to include voice commands, enhanced camera capabilities, and other new features. Vision DE Suite 2.0 delivers live video collaboration, photo/video capture and viewing (plus image resolution control), real-time file synchronization and alerts, a remote management console, and flexible controls to dynaEdge AR Smart Glasses users. The upgraded software is now available for purchase, while existing customers will receive a free upgrade.


RealWear Rolls Out Zero-Touch Deployment Solution with RealWear Foresight Cloud Platform

In other RealWear news, the company announced the RealWear Foresight cloud platform with zero-touch deployment, now a built-in feature of the HMT-1 and HMT-1Z1. The solution accelerates early enterprise deployments, allowing RealWear to ship devices directly from its fulfillment centers and organizations to immediately and securely deploy the technology by adding any app from the RealWear app catalog. Companies who’ve optimized their apps for the HMT-1/HMT-1Z1 include HPE, Librestream, PTC, Ubimax, and Upskill.


AMA Partners with Proceedix to provide advanced remote assistance solutions

The integration of XpertEye and Proceedix delivers the most comprehensive solution for remote assistance and work flow support on mobile and wearable devices, maximizing usage and benefits for end users. The alliance of the two solutions is designed for industrial sites with multiple use cases for smart glasses, so that a worker can use the same pair of smart glasses to view heads-up, hands-free work instructions and receive real-time support when needed. See what the CEOs of AMA and Proceedix had to say at EWTS here.


Atheer Announces the World’s First Augmented Reality Management Platform, Creating New Enterprise Software Category

Atheer revealed the “world’s first Augmented Reality Management Platform for industrial enterprises,” a new category of enterprise software aimed at helping companies tackle challenges relating to change, connectivity, talent, and operational complexities. The device-agnostic platform supports natural controls, see-what-I-see video collaboration, digital asset management, contextual awareness, predictive and performance analytics, and more. Aragon Research calls it “an important milestone” for enterprise AR. Check out the White Paper that accompanied the announcement.


Upskill launches support for Microsoft HoloLens

Upskill announced the early release of its AR/MR platform Skylight for Microsoft HoloLens. The move opens up more real estate to display information and extends Skylight into the spatial computing environment, offering a new experience for Skylight customers. Users can use hand gestures and simple gazes to navigate in virtual space and view multiple windows at the same time. Building on HoloLens’ Windows 10 capabilities, the solution securely connects to back-end systems to pull information into the mixed reality environment. Watch the video.


Three trends to watch in enterprise wearables

The Glass team shared their experiences at EWTS 2018 in a blog post, recapping the trends they’ve observed working with their partners and customers. Read it here. Jay Kothari and his team at X, the moonshot factory, say they are continuing to improve Glass based on user feedback.

Empowering the Power Sector: The Use of Wearable and Immersive Tech in Utilities

Today’s power and utility companies are navigating a period of uncertainty: Political, environmental and social pressures are making it critical for the power sector to evolve the technology and business models by which it has traditionally operated. Radical policy changes such as regulation rollbacks and tax reforms, severe weather including historic floods, hurricanes and fires, a rapidly retiring workforce and changing electricity needs are testing utilities, compelling them to embrace digitalization… with caution.

And it’s not just in the U.S.; energy markets around the world are changing. As power grids become smarter, electricity gets cleaner, and consumers have more choices; utilities are rethinking how they generate and sell electricity, how they can make their operations more intelligent and give customers more control while safeguarding reliability, affordability and safety.


State of the Power Sector: Trends and pain points

 Changing Fuel Mix

Power generation today is increasingly diverse and decentralized. The rise of cheaper renewable and distributed energy sources has led to a kind of fork in the road: How do traditional energy providers strike a balance between maintaining and repairing aging infrastructure and investing in the future? The trends towards grid parity and liberalization of the energy market are clear: 50 gigawatts of coal-fired generation capacity were retired between 2012 and 2017, and BMI expects the capacity of renewables (wind, solar, etc.) to double by 2026. Some analysts are even saying the cost of delivering power via grid could surpass that of consumers producing and storing their own energy as early as 2022.


The New Energy Customer

Becoming more responsive to customer demands (and more resilient in the face of extreme weather) requires more than just strengthening poles and wires; it means stemming the tide of outgoing knowledge and training the next generation of utility workers to do their jobs better, faster and safer. It means new services and charging models that give customers more control over their energy consumption and even manage the surplus energy generated by consumers-turned-prosumers. A digital grid powered by automation and data intelligence will help synchronize the new complex network of fuel and power providers to deliver increased flexibility, cleaner energy, faster service, and lower costs to consumers.


Making Sense of the Data

 The large amount and variety of data collected as the grid gets more connected – data from smart equipment, customers (mobile notifications and smart meter data), and even drones (visual GPS, infrared LiDar, etc.) – is a challenge in and of itself. Processed and analyzed correctly, this information could help power companies stay on top of outages and damaged assets, anticipate demand and repairs, optimize scheduling, and improve customer service. But to translate all this data into actionable insight, utilities must invest in advanced data analytics along with the tools to feed information to change agents “on the ground.”


A Dying Breed

With half of their workforce expected to retire over the next several years, it’s critical for power and utility companies to be agile and adapt. The industry, however, is dealing with both decades-old infrastructure unfamiliar to younger engineers and newer smart grid technology alien to veteran workers; not to mention low-tech work tools and inadequate training methods like paper and pencil, slide decks and videos.

In addition to capturing outgoing expertise, utility organizations need to make new employees highly proficient quickly. A Department of Energy survey last year found that there are two types of utility workers in short supply: Those with firsthand knowledge of legacy systems and those with the training or qualifications to move up and replace the former. And though 74% of employees are ready to learn new skills, the number of different devices and generations of technology in a typical substation today – many lacking maintenance and repair records or even user manuals – complicates training.


Applications of XR and Wearables in Utilities

If you’re wondering how utilities are going to maintain revenue as the demand for non-renewable electricity continues to decline; you’re not alone. In order to make necessary investments and keep rates competitive given all the new players, utilities have to look beyond power generation for opportunities to reduce costs and increase productivity. One option they’re exploring are new and continually improving wearable and immersive technologies, especially augmented reality. In fact, despite heavy regulations, energy and utilities are one of the top three verticals buying Augmented Reality glasses (ABI Research).


Efficiency & Productivity

A quick response time in a power outage depends on technicians being able to quickly and accurately assess the damage and expedite repairs; but what if field workers lack the knowledge or experience to do so? This scenario is becoming more common as experienced utility workers retire before transmitting their specialized knowledge to their replacements and as the required skills for the job change and diversify (along with fuel supplies). Smart glasses present a solution in the form of on-demand data, step-by-step instructions, and over-the-shoulder remote coaching. If AR overlays fail – information like asset type, operating stats, maintenance history, etc. overlaid on a piece of equipment – see-what-I-see assistance from an office-based, expert worker would speed the job along while leaving both hands free for actual repairs. This has the added benefit of easing the impact of changing workforce demographics and enabling utilities to do more with less, as one expert in an office can remotely mentor an entire team of younger technicians.

AI-based data solutions and even virtual reality models could help predict failures to distribution equipment and other power quality issues, and furthermore dispatch the closest technician to the job and automatically order replacement parts. And with new data sources, existing utility systems of information like asset management, distribution management and geographic information systems will improve, as will the AR overlays and virtual SMEs guiding workers in the field. All of the above speeds up power restoration, improves customer service, and reduces operating and maintenance costs.


Safety

With employees spread out at multiple field locations, keeping the utility workforce safe is a challenge. Usually, engineers’ status and location are known only if they check in regularly. But body-worn wearables equipped with sensors that monitor location and risk status to workers, including hazards in their environment and key biometrics, allow real-time incident reporting and safety warnings. Real-life examples include smart badges that detect when the wearer has fallen from a pylon, smart clothing that can monitor heart rate and heat stress while climbing a transmission pole, and smart wristbands with built-in voltage detection.


Training

Smart glasses both stream and record, meaning institutional knowledge can be reserved in the form of first-person training videos recorded by seasoned workers wearing smart glasses. Additionally, remote guidance “sessions” can be recorded, serving in the moment to help younger workers on the job and later as training material to look back at. The same can be used to design VR or MR training simulations for incoming employees, as we now have the studies to back up the effectiveness of immersive experiences over traditional learning methods.

By wearing an AR display, utility workers in any job can have immediate access to the resources and real-time intelligence they need right in their field of view. This error-proofs the work of newer employees while simultaneously training them on the job. Moreover, the flexibility afforded by XR in training will be absolutely critical as the skills and knowledge required of the next-generation utility workforce change in sync with power generation itself.


With tremendous industry-wide support, especially from the Electric Power Research Institute (EPRI), the power sector is taking a long-term yet effective approach to not only piloting the latest in immersive wearable tech but also producing the studies – hard data – to ultimately facilitate industry-wide adoption. See my next post for use cases!

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-11, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Tickets now available at www.aweeu.com.

Let Your Customers and Workers Choose the Right XR Use Case for You

Here’s a common misconception: The more robotics and Artificial Intelligence (AI) advance, the more expendable human beings become in the workplace.

Although Forrester Research predicts automation will displace 24.7 million jobs by 2027, it’s irrational to fear that robots will ultimately replace all human workers. For as robotics and AI improve, so do technologies for empowering human workers. I’m talking about wearable technologies like augmented and virtual reality headsets as well as wearable robotics (exoskeletons) that enable humans to work longer, quickly train for new jobs, and perform in sync with automation. You could even argue that as automation progresses, human workers will become more indispensable to enterprises—while robots may assume the dangerous and repetitive aspects of work, unmanned technology won’t be able to address every productivity issue or match distinctly human capabilities like human dexterity and imagination.

When it comes to embracing disruptive technology, successful organizations take a “user is king” approach, finding out pain points in the business directly from the source, i.e. workers or customers who are expected to use or benefit from the technology. Whether it’s getting a group together for a brainstorming session, including members of the workforce in the proof of concept stage, or simply encouraging a company culture where employees feel comfortable sharing their ideas with leadership; there is no one better than the user herself to determine where and how to digitally transform.


“Treat employees like they make a difference, and they will.” – SAS CEO Jim Goodnight


Two companies have gone beyond merely asking for user input: KLM Royal Dutch Airlines established a physical hub to foster workers’ original ideas for using emerging technologies; while Lowe’s went directly to the customer, applying “young” immersive tech to age-old home improvement shopping challenges. Essentially, KLM and Lowe’s are letting their employees and customers come up with the use cases in which they’re investing.

KLM Royal Dutch Airlines

In 2016 at its Amsterdam Airport Schiphol East base, KLM Royal Dutch Airlines opened its Digital Studio, a creative space where workers from all areas of the airline’s business are encouraged to come and innovate. Here, employees can put forward ideas on how to use digital technologies like AR and blockchain in their work, and see their ideas fast-tracked into development and then, hopefully, into practice.

The Digital Studio, which currently has room for 200 workers, is based upon Dave West’s Scrum Studio concept of an environment where high-performing teams, physically separated from the main business, can fast-track projects. It’s very hard to change large legacy companies like KLM from within: The larger the organization, the higher the chances of disruptive technologies ending up in pilot purgatory and innovation suffocating in red tape between divisions and levels of management.

Though most of the current projects at KLM’s Digital Studio are still in the experimental stage, a handful have turned into practice. The studio has embraced KLM employees of all different backgrounds and roles, who may not have otherwise had the opportunity to take their transformative ideas further. Take Chris Koomen, who was stationed in KLM’s engineering and maintenance division: Chris had an idea for using VR, so he joined the Digital Studio and has been a part of integrating VR for training aircraft crew. Another idea pitched by a KLM mechanic involves using AR in aircraft and engine maintenance.

Every four weeks, the Digital Studio hosts a demo of what it’s working on to interested observers. The lesson here is don’t hide emerging tech in a lab unless you’re going to let the user in. Show employees what’s out there, give them resources, and let those who perform the job every day tell you how to transform the business.


“The customer experience is the next competitive battleground.” – Jerry Gregoire, former VP & CIO of Dell


Lowe’s

Despite the impression one might get from HGTV, building things is not easy for the non-professional. Planning a home improvement project, shopping for building materials, executing the project…what’s most difficult for the average consumer, even a hardcore DIY-er, is visualizing the final product. But it seems a solution has finally appeared in the form of XR (AR, VR, MR), and all the major home improvement brands recognize the potential. There are now apps for virtually measuring your surroundings and picturing all kinds of design options and home products in your real space. And it’s not just the Lowe’s and Home Depots of the world—architects and engineers have seized upon VR to help clients visualize new structures, real estate agents are giving virtual home tours, and even Gulfstream Aerospace employs XR so its clients know exactly what their custom jets will look like when delivered.

Lowe’s has been conspicuously innovative in making the benefits of XR available to its customers. For the last four years, powerful new immersive technology design and shopping tools have been brewing in Lowe’s Innovation Labs. Josh Shabtai, Director of the Labs Productions and Operations, says he looks at those problems that keep resurfacing. Since the introduction of Holoroom How-To in 2014, Lowe’s Innovation Labs has rolled out an impressive suite of mobile apps / pilot projects to gauge customers’ comfort level with XR, including Lowe’s Vision, In-Store Navigation, and View in Your Space.

Lowe’s is trying to solve the classic pain points of home improvement shopping by giving customers the ability to see with the eyes of a contractor or interior designer, determine whether products fit in their space, virtually tile a bathroom, operate a power tool, and more. By focusing on customer problems, Lowe’s has made some of the strongest cases for consumer AR and VR to date. The retailer’s steady flow of practical immersive experiences even landed it at the top of a list of most innovative companies in AR/VR by Fast Company!


With each employee-generated idea, KLM not only gains a potentially transformative technology solution but also primes its workers for the change to digital—there’s no need to convince employees to use solutions they helped conceive of. And with each application, Lowe’s refines the XR tools that future consumers will use to visualize spaces and learn new skills; ideally positioning itself to scale when the time comes, build customer loyalty and future-proof its business from online competition.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-10, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Tickets now available at www.aweeu.com.

 

Image source: Lowe’s via Road to VR

Making Your Next Flight Safer and Smoother with Wearable AR+VR

From building the actual plane to the in-flight experience, wearable XR (AR, VR, MR) devices have a role to play in multiple professions within the commercial aviation industry. Employees whose jobs affect every aspect of one’s trip, including aircraft maintenance workers and flight crew can make use of wearable XR technologies to ensure the end goal: A safe and satisfied traveler. Find out how XR might be used on the ground and in the air when you go on your next business trip or vacation:


On the Ground: AR for Assembly

Both Airbus and Boeing employ augmented reality (AR) glasses in the aircraft assembly process. Airbus workers follow plans directly in their field of view, superimposed on the plane’s interior during cabin installation. They use the same solution to check the accuracy and quality of their work (image recognition technology and artificial intelligence at work); while Boeing employees use smart glasses to view a heads-up, hands-free roadmap for wire harness assembly over their real-world view. In each case, AR functions to form a stronger connection for the user between textual or diagrammatic instructions and the real working environment.

Using AR glasses with software by Upskill helped Boeing save tens of millions of dollars, but it’s not all about money: By helping employees work faster without error, aircraft manufacturers can deliver defect-free planes to customers quicker. Airlines and other buyers thus receive faster-built, higher quality aircraft and parts that breakdown less often. Aircraft and parts engineers can also use AR and VR devices to collaborate on new designs from anywhere in the world, sharing and testing ideas and even simulating the assembly or installation process to foresee issues. New XR platforms are only making this collaboration easier.


VR for Training

After assembly comes maintenance: It can take up to eight years to train and license an aviation maintenance professional. This includes aircraft OEM mechanics and airline technicians who perform safety checks, prepare aircraft components for flight, make repairs, and more. While accessing real aviation equipment for hands-on training is costly and difficult, in VR trainees can practice skills in a realistic, accident-proof immersive environment with virtual parts and tools. For instance, a mechanic wearing a VR headset could walk inside an engine and examine its parts as well as simulate different repair scenarios. With advanced audio and haptics (like a haptic suit), the trainee could even hear the noise and feel the motion of the engine, better preparing him for the real thing.

A recent study at the University of Maryland found that people actually learn and retain information better through immersive experiences compared to using a computer or tablet. Enterprises are also finding VR to be superior to reading a manual, watching videos, or taking a lecture-style class. While not an example of full immersion, Japan Airlines used Microsoft’s HoloLens to improve training for its engine mechanics—in place of physical hangouts, trainees learned all the engine components by working on a virtual engine in mixed reality.

Learning by doing with AR is effective and cost-saving for training, as well. Aviation maintenance workers can learn on the job without risk of error by using heads-up, hands-free smart glasses to view fool-proof text and visual aids over their work. The technology can even validate each step of an inspection or repair to prevent errors. Static instructions can become interactive, with virtual arrows and labels appearing on top of real-life aircraft equipment, showing the user where parts and tools should go. The result: Faster training without sacrificing accuracy or quality = quicker maintenance, fewer flight delays, and happier travelers.

Once the engine has been overhauled, the plane is ready for service. Expensive and logistically challenging, pilot training is another opportunity for VR. In recent years, the burden of paying for flight school has fallen onto pilots themselves. The $60,000-$80,000 price tag explains why flight school enrollment has fallen in the U.S., leading to a growing shortage of trained pilots not all that unlike the troubling shortage of skilled workers in other industries. CAE forecasts that over 255,000 pilots will be needed in the global commercial aviation industry by 2027, yet less than half that number has even begun training. Some carriers and manufacturers are making efforts by sponsoring aspiring aviators or expanding their flight training services, but the cost and time is still too great.

For industries with large, complex and expensive equipment like aviation, VR offers the closest thing to hands-on training. Virtual reality, capable of simulating almost every aspect of flying, feels more real than many current flight simulators (essentially stripped airplane cockpits with screens for windows) and is adaptable to all kinds of scenarios. Rookie pilots can walk around the cockpit, interact with the plane’s controls, and even practice an emergency landing, with tactile feedback to increase the sense of realness and help build muscle memory. VR is already finding its way into flight training programs: Airbus, for one, has been able to reduce training time and train more people in limited space using VR to supplement training in real aircraft; while Future Visual created a simulation for Oculus which takes pilot students through the entire pre-flight process. And VR isn’t just for ground crew and pilots; cabin crew and even airport staff training could incorporate immersive tech, as well.


In the Air: AR for Guidance

The length of runway required for a standard aircraft to get off the ground can be calculated, but what if there are unexpected failures? What if the engines aren’t working to full capacity or the takeoff field is wet? Will the aircraft still reach the required speed for takeoff? According to Boeing, 13% of fatal aircraft accidents occur during takeoff. In fact, pilot errors, not maintenance failures, are responsible for the vast majority of all aviation accidents. This isn’t surprising considering it’s largely left to the pilot’s subjective opinion to determine a response when something goes wrong.

The problem lies in how information is presented to the pilot inside the cockpit. It’s hard to focus on flying when you have to read and quickly analyze the text on a bunch of small instruments and screens all around you. AR technology can display this information in a more intuitive format. For instance, with smart glasses, information like pre-flight checklists, step-by-step instructions, current weather and air traffic information, even a 3D graphic of the takeoff path can appear overlaid in a pilot’s vision before takeoff. Aero Glass actually has a solution that displays flight path and instrument data to small airline pilots wearing smart glasses. The same cockpit information a pilot might get using physical controls and touch screens can be retrieved instead by voice command; and when a snap decision needs to be made during a flight, AI technology can pick out the most relevant information to display to the pilot.


XR in Flight Service?

The benefits of integrating AR glasses and VR headsets into aircraft assembly and technician training are tangible today, but at this point airlines have merely proposed ideas for using XR in the air without seriously investing. This is probably due to the consumer-facing nature of the in-flight experience. Providing flight attendants with smart glasses to interact with passengers or offering VR headsets as in-flight entertainment are not critical use cases like the need to quickly train thousands of new pilots. Moreover, the timeline for mainstream consumer use of AR and VR is still unclear.

XR hasn’t yet transformed the experience of flying, but some airlines are considering it. Air New Zealand, for example, had its crew members try out HoloLens to expedite and provide more tailored customer service during the flight. To cater to individual passengers, flight attendants might access their flight details (to help make connections), food allergies (to personalize meals), even their emotional state (facial recognition tech). Air France trialed VR headsets for in-flight, immersive entertainment; and though not in the air Lufthansa has used VR to sell upgrades to premium class right at the gate. Who knows? Maybe one day those safety instructions in your seat pocket will be replaced by a virtual reality video. In the meantime, rest assured that XR technologies are improving aviation operations behind the scenes, from the hangar to the cockpit.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-10, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Apply to exhibit, submit a talk proposal and buy Super Early Bird tickets now at www.aweeu.com.

Everything Enterprise XR Announced at AWE USA 2018

The scope of the Augmented World Expo is large to say the least—six tracks, a huge expo divided into pavilions, a Playground of entertaining immersive experiences, workshops, and more. As opposed to EWTS’ enterprise focus, AWE truly gathers everyone interested in defining and progressing the future of XR in every aspect of life; and BrainXchange was happy to partner with the show’s producers to help plan the industry event.

There were many announcements at the 9th AWE and some really cool tech on the expo floor (mixed reality backpack, anyone?) For our followers interested in the business and industrial applications of wearable XR technologies, we’ve separated enterprise from consumer in recapping the major developments (yet still beta in many cases) that came out of last week’s event:


Kopin

One of the most anticipated announcements was for the Kopin Golden-i Infinity: A compact and lightweight, gesture- and voice-controlled smart screen that attaches magnetically to turn any pair of suitable eyewear into an AR display. The Golden-i is powered by an Android or Windows mobile device – thereby offloading the heavy lifting – and can connect to apps using a USB-C cable. It’s intended for enterprise use and will arrive by the third quarter of this year at a price of around $899.


Qualcomm

Qualcomm revealed the Snapdragon XR1 Platform, the first chip specially made for standalone XR devices. The new processor features special optimizations for better interactivity, power consumption and thermal efficiency; and could potentially reduce the cost of entry for new AR/VR hardware developers. Qualcomm also released a reference design that has already influenced forthcoming standalone devices from VIVE, Meta, Vuzix and Picoare.


Vuzix

In addition to taking the stage alongside Qualcomm to reveal the new Snapdragon XR1, Vuzix announced a partnership with Plessey Semiconductor and a shipping date of June 1st for the Blade AR Smart Glasses. Both partnerships will affect Vuzix’s next-gen smart glasses (expected in 2019) by increasing processing power and upgrading the display engine. During his keynote presentation, Lance Anderson also called on developers to help augmented reality move forward by creating practical and entertaining apps for the Vuzix Blade, the first fashion-friendly smart glasses for both work and play.


RealWear

AWE attendees were introduced to the HMT-1Z1, the first commercially available, ruggedized head-mounted AR computer certified for use in potentially explosive work environments (ATEX Zone 1 and C1/D1). The intrinsically safe wearable computer presents no ignition risk, allowing all workers to go hands-free and take advantage of the efficiency benefits of the HMD, and will ship on June 15th.


eSight

SPEX, a new division of eSight Corporation, showcased its first AR headset platform offering “breakthrough enhanced vision” in commercial, industrial and medical scenarios that require precision vision. The lightweight HMD has no release date as of yet but has been described as comfortable, providing an augmented view of the world without obstructing the user’s natural vision.


Atheer

Atheer announced the latest version of its AR platform, which includes secure group collaboration so that multiple remote experts can provide live video guidance and support across the supply chain (think of manufacturers with multiple suppliers). The company also widened the range of business processes supported by the Atheer AR Workflow Engine to include dynamic warehouse pick lists, contextual task guidance, checklists, link workflows, surveys, and note-taking for seamless process documentation.


Epson

Epson released the Moverio AR SDK for its line of Moverio Smart Glasses, which adds new capabilities like 3D object tracking using CAD data and 2D image tracking to the former SDK. The update enables the creation of 3D content for Moverio glasses and can detect various objects from 3D CAD files (no need for QR codes or other markers) as well as track multiple 2D images on a 3D plane. Epson is accepting applications for beta testers to help identify bugs.


Kaaya Tech

Kaaya Tech’s HoloSuit, a motion capture suit featuring haptic feedback for full immersion, was on showcase at AWE. The MoCap suit with haptic tech comes in two models, a basic one with 26 sensors and a higher-end version with 36 sensors. As opposed to games and entertainment, Kaaya Tech sees its technology being used in physical training simulations for industrial jobs, factory line work and the operation of heavy machinery.


ODG

ODG demonstrated a working model of an AR oxygen mask it has been developing with FedEx. The mask, named SAVED for Smoke Assured Vision Enhanced Display, has a heads-up AR display to help pilots make a safe landing despite smoke filling up the plane. In the near future, ODG plans to offer the technology to civil and commercial aircraft manufacturers and pilots as well as the military.


ScopeAR

ScopeAR debuted a new AR platform offering real-time remote assistance and augmented reality smart instructions. The all-in-one solution combines Scope AR’s video calling app Remote AR and the AR content creation library WorkLink to enable increased levels of collaboration and guidance.


Toshiba

At AWE, Toshiba demonstrated its dynaEdge AR Smart Glasses with two new applications resulting from recently-announced partnerships with Applied Computer Services (ACS) and Ubimax. ACS’ Timer Pro Storyboard software for video training and the Ubimax Frontline application suite are now both available on the dynaEdge.


Meta

AWE attendees got a live, on-stage demo of the Meta Viewer, the first software application for the Meta 2 headset that lets users view 3D CAD models in AR. Currently in beta state, the app will save time and reduce costs in the product development process—everyone in the development chain (designers, salespeople, etc.) will be able to use Meta Viewer to collaborate and interact with 3D designs without having any special technical skills.


RE’FLEKT 

The company has added Sync – “the first software solution to automatically create edge-based tracking from CAD data” – to REFLEKT ONE, its suite of AR/MR app development tools. Sync is designed to further simplify the transformation of existing technical documentation and CAD data into AR/MR manuals and enterprise applications. With Sync, RE’FLEKT claims AR apps for maintenance, training and operations can be built completely in-house. Companies can save time and money and do not have to share their proprietary CAD and other data with a third party.

 

Image source: Wareable

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-10, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website or download the EWTS 2018 Brochure.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Apply to exhibit, submit a talk proposal and buy Super Early Bird tickets now at www.aweeu.com.

Setting Up An Inventory System Is As Easy As 1-2-3…4

Written by Special Guest Bloggers Robert Seward and Steven Lewis, Co-Founders at Rendered Perception

 

Computer Vision (CV) and Augmented Reality (AR) coupled with Artificial Intelligence (AI) will create that step change for inventory improvement that you are looking for. A good inventory system is a byproduct of having a deep understanding of your customer. Through our years of experience, that means you must be relentless about delivering a great customer experience. If you truly understand your customers’ jobs to be done, you will innovate and hire the correct product. More importantly, it is about progress not just a static product or service. There are plenty of off-the-shelf inventory management platforms for purchase but creating the best-in-class experience cannot be pulled from the shelf. When building an end-to-end inventory system, it should be set up in a way to collect insights, learn, teach, predict and understand customer circumstances. We will describe how setting up an inventory system is as easy as 1-2-3…4.


Step 1. Pain points: Understanding Customer Friction

First, you must dig into all the pain points, rationalizing customer friction points. In creating any solution, we first fall in love with the problem. We employ a 5-D method: Discovery, Define, Design, Develop and then Deliver. Whether you have been in the distribution business for years or are looking to increase your value proposition by adding warehousing to your transportation outfit, pain points exist. Inventory is a function of storage and flow.

Pain points on the flow could be as simple as needing better coordination with your vendors on the receiving side.  Implementing something as simple as advanced ship notice (ASN) provides visibility to the transported inventory. Couple ASN with the product type and engineering standards provides earned hours for scheduling within a workforce management system. It is common to use inventory buffers against the variability associated with customer demand. It is critical to know what you have, where you have it, where you are going to need it and how you will provide it.  Yesterday, you needed inventory correct at your edge node (local unit). Today, you need inventory visibility across the enterprise in real-time to accommodate the different purchase channels as well as provide vendors visibility to collaborate. Even outside the normal business, when a weather event like a hurricane happens, it is critical for inventory precision. Having the ability to create a pop-up retail unit, dynamically shifting inventory to the nodes that matter, is a competitive advantage and delivers tremendous value to customers that need it the most.


Step 2. People Focus: Simplify Tasks and Activities

Inventory systems can be cumbersome, frustrating and complex.  We have known operators within the business that have a successful track record garner more influence on how the inventory flow and processes should work. The challenge can be having a holistic viewpoint of the pain points and job to be done. The operator has tremendous domain knowledge of the business and expects everyone to have that level of experience and execution. Reality is the system should be designed to the lowest common denominator. You cannot assume much of the workforce will be able to execute a system designed by and for an expert operator. The balance is how do you leverage the person with operational expertise with professionals in the inventory space and a sprinkling of tasteful automation.

If you get this wrong, you spend good money and time, yet employees end up fighting with the systems and the inventory is not correct. The natural inclination is to automate everything and hope the problem will go away.  There is no shortage of use cases that people can speak to that would make their professional lives easier. The challenge with that is automation requires very complex calculations, multiple streams of data and backend processes. You do not want to automate bad behavior. The cost to automate something that changes frequently is a waste of capital. Before automation, you should have very solid controls as a foundation when creating business requirements. People that design the processes have great intentions but cannot aggregate the complexities thus creating a mess. There are several case studies that illustrate the importance of identifying the right systems to automate versus enhanced workforce. There is a sweet spot on the automation curve that leverages labor expenses intelligently versus spending capital on automation.

Fun Math

If your inventory system is only 60% accurate, what is the math of your secondary systems and how accurate are they? If they are not perfect, you start to talk about fractions of fractions and your system collapses. Where you want to start your calculus is with a near 100% for your foundation (which is Inventory by the way people!), and then your fractions can start from there, preferably 99% or 100%’s all the way down so that it runs smooth. If your foundation is secure and running great, your secondary systems will take care of themselves so that you can focus your support and attention to more important things… like the customer.

Example: You order an item online and you don’t get it. Does the problem end there? The company has a 95% ship rate. If the customer did not get it, where is it? Where was the real-time alert identifying a break in the supply chain? Proactive versus reactive. Find and fix the problem before the customer realizes anything less than superior service has occurred. If there is a problem in the supply chain that cannot be addressed in a timely manner, the customer should be updated and informed before unpleasantly surprised.


Step 3. Process Focus: Standardize and Streamline Routines

You have heard the expression, “what gets measured, gets done.” Companies understand the value of simplifying, standardizing and optimizing processes. Creating routines and standard operating procedures (SOPs) aligns large-scale labor forces. The challenge is not in the set-up of engineering standards, working data sheets and frequency studies. The challenge is in the delivery of the training material!  No one appreciates the series of 4-inch binders containing outdated instructions on how to perform a task. Maintaining the binder content has evolved to basic interactive training videos. Would it not be easier to use Augmented Reality (AR) to do the training while the employee is performing the task? We have seen training that normally takes several weeks down to a few hours.

Once you have an AR-assisted solution available to help employees complete the task, you need to have a follow-up mechanism. Yesterday and today, you would have a small team of auditors or managers audit a sample of tasks. Does that audit team need to exist tomorrow? Could you build AR tools performing system-assisted inspection? You still need to inspect what you expect. Instead of auditing a person, you would be validating the results… a modern version of trust but verify.

Building an AR-assisted solution will not happen overnight. Good news, though, is you get notable incremental benefits along the way. Most approaches today start with taking existing systems to mobile. Then from mobile to head-mounted displays. Lastly, head-mounted displays to basic AR. We believe in starting with basic AR and rapidly iterating to more value-added AR. A 3-year roadmap could look like the following:


Step 4. Platform Build: Innovation, Automation and Analytics

Building the platform is the fun part. Integration is simply a function of inputs, outputs and transformations. Most people see and judge a solution on the merit of interface. The secret is not in the interface, it is in the data capture. Identifying the source(s) of data, building real-time systems to ingest the data and build a system to intelligently understand and then apply the data are some of the most important parts. This is not sexy but pays tremendous dividends. Please note we did not get this right the very first attempt. What kept us on track is we had a motto for when we reviewed our “final” solution design– Hate your design, continue forward and iterate tomorrow. We did a 3-month proof of concept that we could have easily spent a year on, but we would not have gotten through all our test-fail-learn cycles.

The diagram listed below is an oversimplification to the actual architecture design. A few notable jobs to be done based on our experience:

  • Capture lost sales opportunities – what, when, where, why, how
  • Workforce planning – based on routines, SOPs, engineering standards and dynamic tasks
  • Connectivity throughout the supply chain – anchored in the retail unit and worked upstream and downstream
  • Predictive insights – decision options, consequences, pros, cons

Streamlining everyday tasks, performing wildly complex computations, and having a personal assistant to talk AND walk you through exceptions should be a staple. There is a lot of work that goes into building out the technology stack, software configuration and use case prioritization.


Closing

The business should be made as simple as possible. We have built algorithms to create calculations to redesign direct labor out of the system as well as add capacity and increase accuracy. As part of the journey, we built backend processes to remove non-value-added time associated with set-up and wayfinding. In the end, we have always maintained the customer vantage point.

Inventory management powered by CV, AR and IoT creates an intelligent inventory solution. AR technology is here and unlocks a wealth of value added opportunity. If you truly understand your customers’ job to be done, you will innovate and hire the correct product. We fall in love with the problem. If you strive for the best-in-class customer experience, building an inventory system really is as simple as 1-2-3…4.

 

If you have additional questions, feel free to reach out to us on LinkedIn:

If you happen to be attending the following AR conferences, stop by and chat: