July 22, 2019
He's working with BMW, Boeing and others to introduce standards and raising the bar in the exoskeleton market: Meet Dr. William G. Billotte, Physical Scientist at the National Institute of Standards and Technology (NIST) and Vice Chairman of the ASTM F48 Exoskeleton and Exosuit committee. I got to interview Dr. Billotte on the importance of standards and fundamental work of NIST. Read our conversation: (Full bio at the end)
Emily: To begin, could you provide a little background on yourself and NIST? When did you first start working on exoskeleton tech?
W: My background is I’m an engineer and a biologist with a bachelors and masters degree in engineering and a PhD in biology, and I’ve been working in the biology/engineering area for probably 17 or so years, providing scientific and technical guidance to different federal agencies, first responders and other organizations. I’ve worked in a number of different areas: biological detection, first responder equipment, critical infrastructure protection, etc. I’ve been in the exoskeleton area since around 2014. I work for a federal organization, the National Institute of Standards and Technology (NIST), part of the Department of Commerce (see here for some history). I’ve been here since 2009 as a physical scientist.
I worked for the Department of Defense before I came to NIST, and I was a consultant here in the D.C. area before that as a bioscience advisor, ever since 2002.
E: What is ASTM? How did it form and who is involved?
W: ASTM is an international standards development organization and there are a bunch of standards development organizations. It’s a non-profit. NIST works with a number of similar organizations across the world. ASTM is where we set up the F48 Committee on Exoskeletons and Exosuits around 2017. We talked to a number of different standards development organizations and it seemed like the best fit was with ASTM. I’m the Vice-chairman on the F48 Committee but I’m not an employee for ASTM; it’s a volunteer-type thing. Everybody has their day job and does standards also.
Here is a link to a recent paper describing the development of ASTM F4
For your reference, there is legislation that encourages federal agencies to use and participate in voluntary consensus standards [National Technology Transfer and Advancement Act (NTTAA), Public Law 104‐113.]
E: Are the companies actually building and using exoskeletons a part of F48?
W: We’ve got around 130 members. Anyone can join. We have meetings about twice a year face-to-face and then meetings all year long sort of how we are now. We’re trying to get standards out there that meet the needs of industry. That’s how standards work in the U.S.; they come from the ground up. If you look on your computer, the USB port is just one example of the many standards that people use every day and rely upon. Similarly, we want standards so that exoskeletons can be tested and manufacturers can easily demonstrate to their users that they’re safe and reliable. We want some guidance out there, like we just passed one standard for labeling exoskeletons. How do you put labels on these and give the user or buyer some information? That was a standard to help the manufacturers label their products and provide the right info for the user—very basic stuff right now. We’re still at the beginning stages of getting standards out there for exoskeletons. It’s an exciting time because there’s a lot to do.
E: What is the exoskeleton market like today?
W: Bobby Marinov, who is also on the F48 committee and runs a website called the Exoskeleton Report, has written a number of articles about this on his site, in Forbes and other places. He has a good snapshot of the market, which is this: In the past two years, you’ve gone from 20 or so exoskeletons being used in the automotive industry in a few places in the U.S. to almost 1,000 worldwide, and that’s just the auto industry and mainly on the assembly line. Chris Reid’s team at Boeing has done a tremendous amount of work in this area, too; Chris is actually the leader of one of our subcommittees and he’s very involved in the ergonomics community. We’re having a face-to-face meeting at the Human Factors and Ergonomics Society in Seattle in the Fall.
E: What counts as an exoskeleton?
W: You’ve gotten to the hard question here. We struggled for at least two years, even before the committee was set up, we started working on how to define the term exoskeleton and how is an exoskeleton any different than a smartwatch or smart clothing. Why is a smartwatch not an exoskeleton? It augments you, gives you different capabilities, you wear it…We had lots of discussions like that. When I see one, I know what it is but how do we define it, and that’s how we got to a definition: A wearable device that augments you physically through mechanical interaction with the body (The ASTM standard definition of an exoskeleton is “wearable device that augments, enables, assists, and/or enhances physical activity through mechanical interaction with the body.”)
We’re not trying to exclude anything. For example, there is an exoskeleton in the consumer market that helps you to ski, but there aren’t a lot of products in the consumer space (that’s the only one that I’m aware of). And we don’t use the word partial; we just say it’s an exoskeleton that just happens to be for the upper body like those that help for overhead work. Because we’re not thinking about it as a giant Iron Man suit. There’s another one, a glove that assists you in grabbing—that’s an exoskeleton.
E: What are the top 3 industrial sectors where exoskeletons stand to have the greatest impact?
W: The big three groups are industrial, medical and military. I think these are three areas where exoskeletons are going to move forward the fastest. From what I’ve seen so far, there has been a big drive in the manufacturing sector like automotive, airplane manufacturing, those types of environments. There are some possibilities in the construction industry, but it hasn’t gone as far as we’ve seen in automotive. Another great possibility is the agricultural sector. Think of anything that involves hard physical labor, a task where you have to lift something, or where there is an awkward static posture; those give you a lot of opportunities. Really, the value of exoskeletons comes down to economics: Work-related injuries, musculoskeletal disorders, overexertion—these cost billions of dollars every year. It’s really easy to justify, which is why big and small companies are looking at this. It keeps workers safe and on the job, reduces the risk of injuries, and workers can do higher quality work for a longer period of time. That’s the potential. Do we have concrete evidence for every exoskeleton? No, we need to do a lot more studies, especially longitudinal studies, but there are enough studies out there than you can see the potential.
E: Where are you right now with exoskeleton standards and why are standards so important?
W: Standards are so important to organizations and countries because they help shape a marketplace so that you can have reliable products, safe products, and the ability to sell in a fair-trade type situation on a worldwide scale.
E: Are there any studies to back up the value of exoskeletons in industrial workplaces? How do you test the devices?
W: NIST is a metrology institute. We do research on how to measure things and help set the measures used by everyone in the U.S. We compare those measures to other institutes around the world. NIST is developing test methods; and so, yes, we are doing some testing but we’re not testing the exoskeletons to test the exoskeletons per se; we’re doing testing with the exoskeletons to figure out how we can test all of them. We’ve gotten a few exoskeletons and developed some load-handling tasks and run a number of test subjects through to test the test method, and that is being documented. That test method will then go into our ASTM F48 committee to get massaged some and at some point it will get voted on and hopefully become a standard.
E: The exoskeletons that companies can buy today haven’t gone through this testing. Is it kind of like the Wild West right now?
W: It’s not exactly the Wild West. There has been a lot of testing, but everyone has done their own testing. That is the power of developing a standard test method because then you can compare devices. Chris Reid at Boeing has tested a lot of exoskeletons, but I can’t take his data and compare it to the data from Ford. I don’t know what tools and metrics they used. That’s why we need a repeatable standard method, so any lab can use that test method and everyone can trust the results. This will lead to a standards based certification process which helps manufacturers show the basic performance and safety of their system and will allow for the end users to not have to inherit the burden of assessing the system other than for company specific applicability.
E: So, the market is kind of regulating itself right now?
W: Well, it’s like any nascent market. The only place that you have regulations right now is the medical exoskeleton market because the FDA in the U.S. regulates all medical products and there are a number medical exoskeletons certified by the FDA that are used mainly in clinics. But it’s different than what you see on an automotive line in that usually the operator of the exoskeleton isn’t the person wearing the device; it’s the nurse or therapist. Think about someone learning how to walk again after a stroke. With exoskeletons, you can give patients “higher doses” of walking in a session with a therapist, speeding up the recovery process.
E: Would the ASTM work directly with the regulatory bodies in different industries?
W: We’re hoping the standards that we develop through F48 will be referenced by regulatory bodies, even the FDA. There may not be any regulation in the industrial market.
Here is a link to the NIOSH Center for Occupational Robotics Research. They look at exoskeletons also and their research would feed in to any industrial focused standards or regulations on exoskeletons.
E: One of my “pet areas of research” is women in the workforce. Do exoskeletons have the potential to enable more women to work in industrial sectors and is there any testing being done on the female body, which is very different from the male body (height, breasts/hips, even spinal cords)?
W: In the testing we’re doing right now at NIST, we’re using men and women. But we don’t see any exoskeletons out there that can make someone stronger than they are right now. If the job requirement is to lift 100 pounds and you can only lift 25 pounds; the devices I am familiar with won’t lift the weight for you. An exoskeleton would help the person to lift the weight more safely and with more repetition. Some may advertise about giving you additional weightlifting capability but as far as the testing I have seen there isn’t anything that can augment your strength like that. But that’s not really the issue. It’s fitting. We’ve been dealing with this issue for a long time, especially in law enforcement. Body armor was developed for a male physique and slightly modified for females and it doesn’t work very well. We’ve been working for years trying to fix that. I hope the exoskeleton community designs for females from the beginning; we’re not going to design a male-fitting exoskeleton and then slightly modify it for females. There will be exoskeletons that fit better for men and ones designed for the female body and even ones that can be easily modified for any wearer.
E: What do you hope to accomplish in 2020 and when do you think exoskeletons will become standard in industrial environments?
W: I think exoskeletons are well on their way to becoming common in the workplace. Seeing how it’s rolling out in the manufacturing sector, aerospace, automotive, etc. I think they will be even more common in 2020. I’m sort of biased but I want to see more standards so that everyone can have an increased sense of reliability and safety with these exoskeletons. Standards will also help stimulate the market.
Dr. William Billotte currently serves as a physical scientist at the National Institute of Standards and Technology (NIST). In that position, he helps industrial, military, medical, and public safety communities with their national and homeland security standards and technology needs. Current activities include serving as a principal scientific advisor to Army for exoskeleton standards and technology issues and serving as the vice chairman of the ASTM F48 Exoskeleton and Exosuit committee. Prior to joining NIST, Dr. Billotte was a CBRNE scientist for the Naval Information Warfare Systems Command (NAVWAR). For NAVWAR, he managed programs to test, evaluate, acquire and share information on CBRNE detection and responder technologies. This included supporting the National Geospatial-Intelligence Agency’s New Campus East construction, the FEMA CEDAP (Commercial Equipment Direct Assistance Program), the FEMA Responder Knowledge Base (RKB) and the DHS SAVER program. Prior to joining NAVWAR, Dr. Billotte served as a bioscience advisor for Booz Allen Hamilton where he supported DoD, DARPA, the Intelligence Community, and DHS in the biotechnology, chemical/biological defense and responder technology areas.
Dr. Billotte holds a Ph.D. in Biology from the University of Dayton, a Master of Science in Engineering from Wright State University, and a Bachelor of Mechanical Engineering from The Georgia Institute of Technology.
*Image source: NBC News