VR: Getting People to Take Safety Training Seriously, Retail Merchandising, and More

Virtual reality is making inroads in the retail industry, at the same time as more and more companies are realizing the powerful potential of VR for training. Here are some of the most recent use cases of VR in enterprise, all of which, when it comes down to it, are customer-facing applications of the technology. The following is evidence of digital disruption ramping up beyond work instructions and collaborative design, to directly impact the products and services that consumers experience everyday:


ADT

In a recent mailer campaign to convey the importance of professional alarm monitoring services, ADT sent out Google Cardboard-like VR headsets that put recipients into a simulated life-threatening situation. Noting a lack of awareness among homeowners around what actually happens during a fire, ADT worked with Harte Hanks to create a VR experience accessible on YouTube that would drive home the potential side effects of carbon monoxide, the physical obstacles that can prevent you from escaping, and other elements of a house fire.

Placing a phone in the viewer sent by ADT, you find yourself in a bedroom filled with smoke. You’re immersed in a mother’s fear and disorientation as she’s awoken by a call from ADT and goes to find her daughter, who refuses to leave without her dog. When the two go downstairs, you see an inferno coming from the kitchen, and then the house loses power. The experience is raw and definitely more powerful than a pamphlet, but at the end of the day it is a marketing campaign to not only change the batteries in your smoke detector every year but also buy ADT’s services. 


Walmart

The retailer is expanding its use of VR beyond employee training to the customer experience, making novel use of its 4,000+ physical stores. Walmart subsidiary Spatial& and DreamWorks created a VR experience based on the new “How to Train Your Dragon” movie that is now touring 40 Walmart store parking lots via 50-foot tractor trailers. In this way, Walmart is able to play host to exclusive VR experiences (featuring VR-powered chairs) and give the masses access to VR overnight—a technology that’s still too expensive for most and that Spatial& views as the future of retail marketing.

By working VR into stores, Walmart and other retailers can cut back on large displays and market products in interactive ways. For instance, shoppers might use a VR headset to put a tent together to test out camping gear or try stowing a stroller in an overhead airplane bin before buying. This is essentially “try before you buy” but inside the store itself. VR can even bring products to life, for example by enabling shoppers to virtually visit the vineyard that produces Walmart wine.


Royal Mail

Mailman vs. dog: It’s a classic TV trope that Royal Mail says prevents postal workers from taking anti-dog attack training seriously. In addition to the cartoon vision of the dog chasing the mailman, the group environment in which this training is traditionally held hurts its effectiveness, as trainees don’t want to be seen taking it seriously. Over the years, Royal Mail has tried videos, brochures, slogans and posters to reduce the number of dog attacks on its employees; now it’s turning to VR.

With around 150,000 postal workers delivering to some 30 million addresses, Royal Mail sees around 2,275 dog attacks per year. Injured employees are unable to finish their routes, which severely impacts customer experience. Looking for a way to isolate the training and eliminate the “banter culture” around dog attacks, Royal Mail began using VR: Now, trainees use smartphones inserted into headsets to experience potential dog attack scenarios, select different actions and receive feedback on their choices. The result: Many units haven’t reported a single dog attack since adopting the VR training system in November 2018. The training was also inexpensive for Royal Mail to pilot nationally.


Kellogg

Accenture Extended Reality, Qualcomm and Kellogg recently teamed up to pilot an eye-tracking VR headset for retail merchandising. The idea is to enable companies to do market research faster, cheaper and on a larger scale. Accenture developed the solution based on a Qualcomm VR reference design headset powered by the Qualcomm Snapdragon 845, using eye-tracking tech from Tobii, eye-tracking data analytics from Cognitive3D, and mixed reality software from InContext Solutions. By tracking where a user looks while moving through a full-scale virtual store, walking down virtual aisles, picking up products and placing items into his cart, retailers can determine the best way to stock shelves.

Brands spend a lot of time, money and effort figuring out optimal product placement but are usually limited in the data they’re able to collect (online surveys and in-home user tests can only go so far). Eye-tracking in VR provides richer and more accurate behavioral data than traditional testing. You can observe what users are looking at, for how long, in a realistic shopping scenario; and expand testing to more geographically dispersed participants (mobile VR). In fact, the VR eye-tracking solution has led to insights that directly contradicted some of Kellogg’s prior assumptions, resulting in an 18% increase in the brand’s sales during testing.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and early confirmed speakers, to come on the conference website.

Using AR/VR for Assurance in Insurance

I recently watched a Netflix documentary about the Fyre Festival. Two things from the story really stuck with me: 1) Festival owner Billy McFarland failed to get festival insurance; and 2) He couldn’t (or wouldn’t) listen to reason, as multiple people told him it would be impossible to pull off such an ambitious festival in under six months. At one point, someone tried to show Billy – using a map spread out on a table – that the island venue could not accommodate the number of festivalgoers and luxury villas that had already sold. While watching, I thought about Virtual Reality, not because it’s my job but because immersive technologies might have prevented the disaster that Fyre Festival turned out to be. What if those around Billy had used VR to snap him out of his delusions? Or what if Billy had tried to get festival insurance? Might an insurance agent have used VR to “preview” the festival and ultimately denied coverage? Perhaps that would have convinced Billy to cancel the event.

The insurance industry is, in fact, exploring virtual as well as augmented reality for a number of applications, including risk assessment, accident recreation, remote claims handling, and customer education. AR/VR may also be a solution to the insurance sector’s labor concerns and the answer to rising customer experience expectations.

State of the Insurance Industry

Insurance companies are not exempt from digital disruption or the need to create a more flexible and even virtual workforce for the digital age. As some manual and traditional industry tasks become automated, insurers will need to both recruit and upgrade their talent at a time when the labor market is incredibly tight. This is especially true for the tech, data science and actuarial labor pool (Deloitte). Furthermore, employees impacted by automation as well as Baby Boomers with irreplaceable institutional knowledge will need to be repurposed, which means retraining and leveraging cutting-edge technology to facilitate remote expert mentoring of new workers.

The traditional insurer-insured relationship can be boiled down to a monthly bill or claims submission when something goes wrong; but today’s insurance customers – many of whom are millennials – want more: More convenience and more personalization in the insurance buying and claims processes. Consumers want more control over their coverage through digital channels; they want insurers to leverage advanced sensors and analytics for tracking trends and results that will lower their payments (as in auto and homeowner’s insurance), and they want more innovative and hybrid types of coverage. These and other new expectations are clashing with the long-established culture of the insurance industry, pressuring companies to look for technology that appeals to a new generation of adults seeking insurance.

Applications for AR/VR in Insurance with Real-life Use Cases

Though the insurance sector is usually slow to adopt new technology, augmented and virtual reality are beginning to show up in the ways insurers market and provide their services. Insurance companies are exploring AR/VR as part of marketing strategies, for educating clients, to estimate damage, for employee training, and more:


Customer-facing Applications:

Insurance is a large and valuable market; and with new players offering fast, efficient, digital services, it’s also a fiercely competitive one. Traditional insurers are turning to technology – both the enabler and accelerator of digital transformation – to stay relevant to a changing customer base:

Explaining Insurance Plans

AR/VR can make the complex process of buying insurance easier by simulating real-life situations to showcase the value of various life, health and other coverage plans. Far more powerful than a brochure, website or salesperson, immersive simulations can drive home the need to save for retirement, simplify pension planning, etc.

Consumer Education / Risk Mitigation

In a similar vein, AR/VR can be used to warn clients about dangers and help them prevent the need to file a claim. By allowing insurers to demonstrate both common and exceptional risks in a virtual, risk-free environment, immersive simulations can improve the safety practices of different types of policyholders. For instance, doctors could use VR to practice on a new machine before using it with real patients, employees could learn to identify workplace risks, and homeowners could learn to prevent floods and fires.

Insurers are also toying with VR incident management and training programs that would give customers a fairer rate (ex. virtual driving tests for auto insurance). After successfully completing such a program, the customer would send her results to her insurance agent, verifying her enrollment and qualifying her for discounts (reduced premiums).

Marketing and Customer Engagement

With the ubiquity of AR-capable smartphones, companies today are increasingly incorporating AR into their brand apps and other marketing strategies. Insurers are no exception: AR experiences and VR simulations that create awareness about the importance of buying different types of insurance are part of new marketing and customer engagement plans. In general, insurers are looking to attract and retain new and existing customers by providing informational and entertaining content. This represents a significant move away from the usually distant or aloof position of an insurance company vis-à-vis its clients.

Customer Service

One way to improve the customer experience is to increase an organization’s operational efficiency; for instance, faster order picking in a warehouse leads to faster delivery and higher customer satisfaction. Another way is to focus on those times the customer directly interacts with the business. In insurance, these times are when a customer purchases a coverage plan, files a claim, or contacts support.

In addition to helping consumers understand insurance plans, AR/VR can provide real-time guidance to policyholders on how to fill out claim forms, resolve billing issues, and more. Some insurers are experimenting with virtual customer service (like a virtual support center) and enabling policyholders to interact with adjusters and begin documenting damage in real time through AR. Whether it’s through an individual’s mobile camera or, one day, smart glasses, adjusters can be “on the scene” with the policyholder, reviewing the damages, even taking exact measurements; allowing for faster and more accurate documentation of loss and faster case resolution.


Employee-facing or Operational Applications:

The game of insurance is about risk avoidance, the goal being to convert consumers and businesses into policyholders while driving down claims. AR/VR can be an effective tool for reaching these goals, not just through customer education but also by improving employee performance, making insurance workers shrewder and more efficient:

(Ongoing) Risk Assessment

AR/VR open a number of new capabilities for risk assessors to reduce cost and loss ratios. As mentioned above, auto insurers are considering administering virtual driving tests to determine whether someone is a safe driver before insuring them. VR is also being used to model risk: Assessors can navigate a building before it’s built, thereby improving insurance estimates, and better judge the safety of, say, a warehouse by simulating potential accidents within and evaluating the locations of exit doors and stairs. During risk inspections, assessors could use smart glasses to instantly document and record notes hands-free, and to connect with remote experts who might point out weak spots by augmenting the user’s field of view.

The Internet of Things (ex. smart automobiles, smart homes, etc.) is huge for insurance, enabling predictive analysis and preemptive actions that should reduce the number of high-frequency, low-impact claims. This paves the way for innovative insurance models, like plans that trigger based upon forecasts of loss as opposed to an actual event. Insurers might also use the wealth of data from IoT technologies along with statisticians to visualize and analyze complex data sets in a virtual setting.

Damage Estimation

Most early use cases of immersive tech in insurance come from the property and casualty side of the industry. This is because AR/VR present the ideal tool for safely recreating real-life disasters and estimating repair costs. Through the use of digital building plans and real-time sensor information overlaid on top of a damaged building, AR glasses-wearing agents can carefully review the damage on-site, doing things like seeing behind walls to determine the location of gas lines and other critical or hazardous objects.

Claims adjusters can overlay images of a building’s pre-loss condition for comparison, document damaged areas hands-free (useful for later VR accident simulations) and confer with remote experts. This makes it possible to more precisely estimate damage and process claims quicker, which, of course, pleases customers. AR glasses also allow for remote damage assessments, where an adjuster shares the view of a colleague at the incident site (wearing smart glasses) or looks through the customer’s mobile device to assess the damage without physically being there.

Remote Guidance and Employee Training

Accenture has found that 85% of insurance executives are interested in leveraging AR/VR solutions to bridge the physical and informational distance between newer and experienced employees and between agents and customers. This is especially key in the training of claims processors, who have one of the most important jobs in the industry (investigating claims). As studies show that people learn and retain information better when it’s presented in context over their real-world view, insurance employees should be able to train faster and more effectively “by doing” whether in a virtual environment or via AR-powered remote guidance on the job.

Indeed, leading insurers are finding AR/VR great for training agents at a lower cost, giving them virtual experience that raises their confidence and the accuracy of their work. Immersive training programs can also help insurance agencies prepare employees to work in specific sectors (ex. auto insurance reps learning about engine repair; home insurance reps learning about maintenance lifecycles), so they can make more informed decisions and offer policy-specific recommendations to clients. Remote technical experts might also provide a second pair of eyes, training agents in real time using AR.

Visual Claims and the Claims Process

Alluded to above is the potential for AR/VR to enhance and speed up claims processing by unlocking new methods for evaluating claims and detecting fraud in the field. With AR, multiple agents are no longer required to visit the claim site; just one employee equipped with smart glasses can go, while experts look on, inspecting damages and calculating losses remotely from the office. The time and money saved leads to greater employee efficiency and higher customer satisfaction. Customers themselves can serve in this role using an AR-enabled mobile device or perhaps smart glasses received upon purchasing a policy.

Policyholders are becoming fans of visual insurance claims, which promise more efficient claims processing and quicker payment. AR-powered video solutions can expedite claim settlements by enabling remote inspections at the First Notice of Loss and reducing adjustors’ time in the field (thereby lowering overhead). Customers can show a contact center agent the cause and extent of, say, a car crash, through a live video connection; giving the agent immediate, real-time access to information, including valuable pieces of temporary information like road conditions, vehicle position, skid marks, etc. This significantly shortens the claims process, eliminating not only the usual site visit but also any lengthy back-and-forth communication between agent and customer. The result: More accurate appraisals and faster resolution time.


Conclusion:

The transition from old industry methods to new ways of working with augmented reality will produce a more efficient and cost-effective insurance marketplace, transforming the ways agents interact with customers, enforce policies, and assess claims. Moreover, business and personal use of AR/VR technologies will open new categories of risk exposure leading to entirely new types of insurance.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and early confirmed speakers, to come on the conference website.

Embracing Digital Transformation: Real-life Use Cases in Energy & Utilities

A handful of utilities are piloting and, in a few cases, even deploying wearable technologies, but the greatest share of interest is and has been around augmented reality. There is an impressive, concerted effort in the utility space by researchers and vendors to thoroughly investigate the technology to see if it’s safe and a right fit for the industry. The Electric Power Research Institute (EPRI) has taken on a great deal of forward-thinking testing of AR, recognizing that standards will have to be determined if there’s to be widespread adoption.

EPRI

EPRI has been a part of several companies’ efforts to pilot AR in electric and utility operations, including Duke Energy and Con Edison. With Duke, EPRI deployed Atheer’s AiR platform to demonstrate how hands-free AR improves productivity and safety and shortens power outage recovery time. In addition to enhancing power restoration, another possibility is using AR to bridge the techno-generational divide. In other research, EPRI is studying the health and safety impacts of AR on workers, keeping an eye out for risks like eyestrain and reduced situational awareness; and sensor-equipped non-AR wearables that can help keep workers safe.


Duke Energy 

Duke’s emerging technologies unit has been a lead experimenter with augmented reality, trying out multiple tools like Atheer’s AiR platform with EPRI for inventory management and basic equipment maintenance, since 2014. Duke also sees potential for training and remote collaboration/troubleshooting in the field. Duke and EPRI worked with Verizon to simulate a storm response, equipping line workers with RealWear’s HMT-1 which uses GIS to provide critical information for repairing damaged infrastructure (ex. where a downed utility pole should be located). The solution could also send automatic equipment/parts orders to a utility warehouse, saving a lot of time.


Con Edison

EPRI teamed up with the New York utility to test various uses for AR, including substation switching, a task that can be dangerous, disrupt electricity and rack up costs, and substation inspections. Con Ed sees further potential in AR for improving worker safety, grid operations and maintenance.

AR glasses could help Con Ed employees in the field with complex tasks like locating buried transmission infrastructure and then making the necessary repairs. They could use smart glasses to access remote expertise. AR could also prevent errors by pointing workers to the right piece of equipment, showing relevant maintenance history and equipment specifications, etc.  


GE Renewable Energy

GE Renewable Energy successfully trialed Upskill’s Skylight platform for smart glasses to the tune of a 34% improvement in productivity in initial trials. It was, in fact, the first time the workers participating in the trial had ever use smart eyewear. Testing took place at a factory in Pensacola, Florida; where wind turbine assembly workers would have to stop what they were doing to check if they were installing parts correctly, referencing a manual or calling someone to make sure. Wearing glasses that projected digital checklists, diagrams, instructions, images and videos that one would otherwise view on a 2d screen directly in the user’s line of sight; employees were able to work more efficiently. A video released by GE makes a strong case for AR. It shows a side-by-side time-lapse comparison of a technician wiring a wind turbine control box the standard way and that same worker doing the wiring 34% faster guided by AR instructions in his field of view. How quickly hands-free AR glasses could tighten the skills gap!


Siemens

Siemens partnered with DAQRI to study the benefits of augmented reality in gas burner assembly training. The trial focused on different “personas” to see how an AR gas burner training app might affect the performance of different types of workers. At the Siemens Power Service Training Center in Berlin, four workers – two novices, one expert, and one worker who had last done an assembly a year before – participated in the pilot, using the app under realistic conditions. Testing revealed benefits to all the worker personas, reducing training time for new trainees and more experienced employees alike. In addition to accelerating learning time, Siemens believes AR could help avoid errors, streamline data collection, and speed up report generatio.


Scotland’s Fife College

In June 2017, students at Fife College in Scotland, “the next generation of offshore wind turbine technicians,” began learning in the school’s new Immersive Hybrid Reality (iHR) lab. The lab provides highly realistic XR training environments and scenarios that are difficult or impossible to simulate in real life. For instance, an actual offshore wind turbine would be over 325 feet above the water. In the lab, students are able to perform detailed inspections of the top of a virtual 7-megawatt offshore wind turbine – even under changing weather conditions, with the sound of the wind around them – while still seeing their own hands and holding real tools.


Toms River Municipal Utilities Authority

This year, the New Jersey utility piloted vGIS, a geographic information system (GIS) visualization platform by Meenim for visualizing overhead and underground infrastructure with Microsoft’s HoloLens headset. The solution essentially allows the wearer to “see” utility lines in real time (for ex. when digging up a street) and it supports both voice and gesture controls so the user has free use of his hands. Take the scenario of a downed telephone pole in the street; with vGIS, all field personnel are able to see the utilities under their feet, which is critical to planning and maintaining critical infrastructure.


We Energies, Milwaukee

For an industry-backed study including Marquette University, EPRI researchers recently visited a We Energies coal plant to observe workers using both monocular (RealWear) and binocular (HoloLens) AR headsets to perform different jobs. In multiple field tests, special attention was paid to the ergonomics of using AR in an industrial environment, with cameras and sensors monitoring users’ eyes, head, neck and shoulders. The question was whether the headsets would assist or distract/inhibit utility workers, who typically work 12 hours, walk several miles and examine 300 pieces of equipment in a day. We Energies workers seemed to prefer RealWear’s device to view checklists, while the research team is looking forward to when more meters, poles, etc. are connected to the IoT and AR becomes even more useful. More devices will be tested at other sites before the final report is released in 2019.


NYPA

I’ve saved New York Power Authority, the largest state-owned public utility in the country, for last due to its impressive digital roadmap. In December 2017, a utility collaborative on the use of wearables to monitor workers’ health was announced, NYPA included. But NYPA’s interest in emerging tech goes beyond wearables: The utility is aiming to be the first full-scale, all-digital utility with a digitally-enabled workforce. To that end, NYPA is installing sensors, smart meters and other data collecting devices in its customers’ buildings and facilities, creating digital twins of its large clients’ energy systems; the data analytics from these efforts should increase productivity and create new value-added services for NYPA’s customers (like helping them optimize use).

The company has created a smart operation center for its power plants, transmission lines, and substations; here, data like temperature, power loads, vibrations, pressure, emissions, moisture and strain is fed, with the goal of becoming proactive vs. reactive. “Digitizing everything” will allow NYPA to predict problems, reduce unplanned downtime, lower maintenance costs, and minimize operational risks. And how do you bring the workforce into this digital grid? Through Augmented Reality.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-11, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Tickets now available at www.aweeu.com.

Empowering the Power Sector: The Use of Wearable and Immersive Tech in Utilities

Today’s power and utility companies are navigating a period of uncertainty: Political, environmental and social pressures are making it critical for the power sector to evolve the technology and business models by which it has traditionally operated. Radical policy changes such as regulation rollbacks and tax reforms, severe weather including historic floods, hurricanes and fires, a rapidly retiring workforce and changing electricity needs are testing utilities, compelling them to embrace digitalization… with caution.

And it’s not just in the U.S.; energy markets around the world are changing. As power grids become smarter, electricity gets cleaner, and consumers have more choices; utilities are rethinking how they generate and sell electricity, how they can make their operations more intelligent and give customers more control while safeguarding reliability, affordability and safety.


State of the Power Sector: Trends and pain points

 Changing Fuel Mix

Power generation today is increasingly diverse and decentralized. The rise of cheaper renewable and distributed energy sources has led to a kind of fork in the road: How do traditional energy providers strike a balance between maintaining and repairing aging infrastructure and investing in the future? The trends towards grid parity and liberalization of the energy market are clear: 50 gigawatts of coal-fired generation capacity were retired between 2012 and 2017, and BMI expects the capacity of renewables (wind, solar, etc.) to double by 2026. Some analysts are even saying the cost of delivering power via grid could surpass that of consumers producing and storing their own energy as early as 2022.


The New Energy Customer

Becoming more responsive to customer demands (and more resilient in the face of extreme weather) requires more than just strengthening poles and wires; it means stemming the tide of outgoing knowledge and training the next generation of utility workers to do their jobs better, faster and safer. It means new services and charging models that give customers more control over their energy consumption and even manage the surplus energy generated by consumers-turned-prosumers. A digital grid powered by automation and data intelligence will help synchronize the new complex network of fuel and power providers to deliver increased flexibility, cleaner energy, faster service, and lower costs to consumers.


Making Sense of the Data

 The large amount and variety of data collected as the grid gets more connected – data from smart equipment, customers (mobile notifications and smart meter data), and even drones (visual GPS, infrared LiDar, etc.) – is a challenge in and of itself. Processed and analyzed correctly, this information could help power companies stay on top of outages and damaged assets, anticipate demand and repairs, optimize scheduling, and improve customer service. But to translate all this data into actionable insight, utilities must invest in advanced data analytics along with the tools to feed information to change agents “on the ground.”


A Dying Breed

With half of their workforce expected to retire over the next several years, it’s critical for power and utility companies to be agile and adapt. The industry, however, is dealing with both decades-old infrastructure unfamiliar to younger engineers and newer smart grid technology alien to veteran workers; not to mention low-tech work tools and inadequate training methods like paper and pencil, slide decks and videos.

In addition to capturing outgoing expertise, utility organizations need to make new employees highly proficient quickly. A Department of Energy survey last year found that there are two types of utility workers in short supply: Those with firsthand knowledge of legacy systems and those with the training or qualifications to move up and replace the former. And though 74% of employees are ready to learn new skills, the number of different devices and generations of technology in a typical substation today – many lacking maintenance and repair records or even user manuals – complicates training.


Applications of XR and Wearables in Utilities

If you’re wondering how utilities are going to maintain revenue as the demand for non-renewable electricity continues to decline; you’re not alone. In order to make necessary investments and keep rates competitive given all the new players, utilities have to look beyond power generation for opportunities to reduce costs and increase productivity. One option they’re exploring are new and continually improving wearable and immersive technologies, especially augmented reality. In fact, despite heavy regulations, energy and utilities are one of the top three verticals buying Augmented Reality glasses (ABI Research).


Efficiency & Productivity

A quick response time in a power outage depends on technicians being able to quickly and accurately assess the damage and expedite repairs; but what if field workers lack the knowledge or experience to do so? This scenario is becoming more common as experienced utility workers retire before transmitting their specialized knowledge to their replacements and as the required skills for the job change and diversify (along with fuel supplies). Smart glasses present a solution in the form of on-demand data, step-by-step instructions, and over-the-shoulder remote coaching. If AR overlays fail – information like asset type, operating stats, maintenance history, etc. overlaid on a piece of equipment – see-what-I-see assistance from an office-based, expert worker would speed the job along while leaving both hands free for actual repairs. This has the added benefit of easing the impact of changing workforce demographics and enabling utilities to do more with less, as one expert in an office can remotely mentor an entire team of younger technicians.

AI-based data solutions and even virtual reality models could help predict failures to distribution equipment and other power quality issues, and furthermore dispatch the closest technician to the job and automatically order replacement parts. And with new data sources, existing utility systems of information like asset management, distribution management and geographic information systems will improve, as will the AR overlays and virtual SMEs guiding workers in the field. All of the above speeds up power restoration, improves customer service, and reduces operating and maintenance costs.


Safety

With employees spread out at multiple field locations, keeping the utility workforce safe is a challenge. Usually, engineers’ status and location are known only if they check in regularly. But body-worn wearables equipped with sensors that monitor location and risk status to workers, including hazards in their environment and key biometrics, allow real-time incident reporting and safety warnings. Real-life examples include smart badges that detect when the wearer has fallen from a pylon, smart clothing that can monitor heart rate and heat stress while climbing a transmission pole, and smart wristbands with built-in voltage detection.


Training

Smart glasses both stream and record, meaning institutional knowledge can be reserved in the form of first-person training videos recorded by seasoned workers wearing smart glasses. Additionally, remote guidance “sessions” can be recorded, serving in the moment to help younger workers on the job and later as training material to look back at. The same can be used to design VR or MR training simulations for incoming employees, as we now have the studies to back up the effectiveness of immersive experiences over traditional learning methods.

By wearing an AR display, utility workers in any job can have immediate access to the resources and real-time intelligence they need right in their field of view. This error-proofs the work of newer employees while simultaneously training them on the job. Moreover, the flexibility afforded by XR in training will be absolutely critical as the skills and knowledge required of the next-generation utility workforce change in sync with power generation itself.


With tremendous industry-wide support, especially from the Electric Power Research Institute (EPRI), the power sector is taking a long-term yet effective approach to not only piloting the latest in immersive wearable tech but also producing the studies – hard data – to ultimately facilitate industry-wide adoption. See my next post for use cases!

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-11, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Tickets now available at www.aweeu.com.

Exoskeletons Get Real: The Ultimate Wearable Technology?

Exoskeletons are nothing new and far from science fiction; in fact, researchers began developing exoskeletons for military use as early as the 1960s. For the last decade, engineers have been exploring exoskeletons designed to augment human strength and other abilities for military, medical and industrial purposes. Over time, these devices have become less clunky and expensive (from over $100k to under $10k in many cases) as well as more specialized and powerful.

Arguably, exoskeletons, not AR/VR, are the current star of enterprise wearables. Today, real companies with the funds to do so are transforming workers’ productivity and safety by introducing even just a few exoskeletons on the job site or factory floor. Ford recently made the largest order of industrial exoskeletons to date, with ABI Research expecting the market to rise from 67.29 million to $1.76 billion by 2028—exoskeletons have arrived.


Exoskeletons find their sweet spot

Combining the power of robots with the intelligence and adaptability of humans sounds great, but the execution – designing machines that conform to how we’re shaped and the way we move – is challenging. How do you make a machine both lightweight and flexible, adaptable to a wide variety of body shapes and sizes? Nevertheless, there are now tool-holding (partial) exoskeletons, exoskeletons for back support and sitting comfortably in mid-air, and even full-body, sci-fi-looking powered exosuits.

No post about exoskeletons can fail to mention this major driver for the advancement of the technology: Workplace injuries. Exoskeleton development has evolved from military and medical applications to industry, where wearable robotics are finding their sweet spot. Legacy industries like manufacturing that are changing due to automation but still rely heavily on human input; industries like construction and shipbuilding in which productivity hasn’t risen in decades; and industries where awkward positions, repetitive motion, and overexertion are common and employers shell out billions on workers’ compensation are particularly ripe for exoskeleton technology.

Assembling, building, moving… the heavy-duty operations of industry in which workers are required to wield heavy power tools, perform overhead tasks, stand for long periods of time, etc. breed accidents, injuries and long-term musculoskeletal stress. The U.S. alone spends $21 billion on workplace injuries, the price tag of healthcare treatment and lost worker productivity. When you consider that a single rotator cuff surgery can take out a worker for up to seven months and cost employers up to $56,000, wearable robot suits don’t seem so crazy. And major industrial players and startups alike recognize the growing opportunity:


 The market

Where once there were a handful of companies working on industrial exoskeletons, the exoskeleton market today has become quite crowded. Here are some of the companies developing and selling partial or full-body, powered or unpowered exoskeletons:

Tool-holding

Lockheed Martin

The large defense firm has long been interested in human augmentation, mainly in the military arena. In 2014, Lockheed introduced its first industrial exoskeleton product FORTIS (currently $24,750). FORTIS, a passive (unpowered), lightweight exoskeleton that transfers loads from a standing or kneeling position to the ground, makes heavy tools like a giant power drill feel weightless to the operator. Lockheed also sells the FORTIS Tool Arm ($7,149), which reduces muscle fatigue to allow the use of heavy hand tools for long shifts.

Bioservo

Bioservo’s first commercial product, the SEM Glove contained sensors that detected the wearer’s actions and activated motorized support when needed to grasp objects. Based on the company’s patented SEM (Soft Extra Muscle) technology, Ironhand ($9,250) is Bioservo’s newest product and a successor to the SEM Glove. It supports grip-intensive tasks while collecting data to categorize risky use cases and can be worn under a normal working glove. Bioservo bills Ironhand as “the world’s first soft robotic muscle strengthening system.” The company has signed contracts with General Motors, Airbus, NASA, and others.


Support 

noonee

With the Chairless Chair ($4,360) by noonee, employees can create a comfortable, more productive workspace at any time. The lower-body exoskeleton is designed to prevent back pain for workers who spend a large part of the day standing by essentially allowing the wearer to lock in and sit in mid-air while doing her work. The Chairless Chair debuted on several manufacturing lines and is now in use globally by over 100 companies. 

Laevo 

The Laevo (approx. $2,000) is a passive back-support exoskeleton for workers who have to frequently bend forward and lift objects. It works by transferring force from the upper body through the straps and to the thighs, thereby reducing pressure on the user’s spine and back by up to 40%. Laevo describes wearing its exoskeleton as “just like” putting on “a coat”—it adapts to your posture so the wearer has a lot of freedom of movement.

StrongArm Technologies

StrongArm’s FLx ErgoSkeleton ($298) is a data-driven upper-body exoskeleton with sensors that monitor posture and movement, providing feedback to ensure the wearer conforms to OSHA safe lifting guidelines. The solution promotes good posture and safe lifting by encouraging the user to bend at the knees and pivot instead of twist. The V-22 ErgoSkeleton ($629) adds cords to the FLx model; these loop over the shoulders and attach to a worker’s hands to restrict arm movements in such a way as to automate proper lifting. The passive exoskeleton shifts weight from the weak areas of the body to the user’s legs and core.

SuitX

SuitX has three models of industrial exoskeletons – backX ($4,000), legX ($6,000) and shoulderX ($4,000) – individual modules that when worn together form the full-body MAX exoskeleton. With backX to help with lifting heavy loads, legX to support crouching for extended periods of time, and shoulder to alleviate overhead work; the full MAX system allows wearers to perform lower back-, leg- and shoulder-intensive tasks with less risk of injury.


Full-body

Sarcos Robotics (Raytheon)

Not yet commercially available, Guardian XO is a robust, powered exosuit that’s said to enable the wearer to lift up to 200 pounds without exertion or strain. The XO features “scaled dexterous end effectors” and force feedback, allowing highly precise tasks with heavy tools or components. Sarcos says the Guardian XO and Guardian XO Max are “coming soon,” and the company recently secured its second development contract with the U.S. Air Force. Sarcos has also formed X-TAG, an industry-focused Exoskeleton Technical Advisory Group, along with executives from Bechtel, BMW, and more.

Comau

MATE (Muscular Aiding Tech Exoskeleton) by Comau is a spring-based exoskeleton designed to ease the shoulder muscles and provide lightweight yet effective postural support during manual and repetitive tasks. Designed in partnership with ÖSSUR and IUVO, a spin-off of The BioRobotics Institute, along with input from factory workers; MATE will be available in December 2018.


New entrants

LG

Household name LG is about to unveil the CLOi SuitBot, which looks like a pair of robotic pants and supports mobility by enhancing the power of the user’s legs. The exoskeleton can work alongside LG’s other service robots as part of a more advanced smart workforce scheme, and it uses AI to learn and evolve over time by analyzing biometric and environmental data. LG hasn’t revealed a price.

Ottobock 

Ottobock is a German artificial limb manufacturer whose close competitor Össur helped Comau design MATE. Paexo is Ottobock’s new project, an upper-body exoskeleton that relieves the strain of repetitive overhead assembly work. Paexo has been tested on 30 Volkswagen plant workers and the automaker is considering using Paexo in series production.


The future of manual labor begins now: Use cases

Betting on the promise of wearable robotics to increase productivity and reduce injuries; a number of construction, manufacturing and logistics companies have begun testing and even deploying exoskeletons. Here are some of the more recent use cases:

Lowe’s

Lowe’s employees can spend up to 90% of their day lifting and moving bags of cement, buckets of paint, etc. So, last spring the home improvement retailer teamed up with Virginia Tech to develop a lift-assist exosuit that would make the workday easier. The result: A kind of harness-meets-backpack with carbon-fiber rods running down the back and thighs. The rods flex and straighten when the user bends or stands, absorbing energy that’s then delivered to the worker when needed. During a 3-month pilot, test subjects wore enjoyment-sensing headsets in addition to providing verbal feedback about the exosuits.

The promised benefits are myriad for Lowe’s: Improved customer service (store staff can fetch items for customers), reduced costs (fewer injuries, reduced insurance premiums), and even better recruitment.

Ford 

In 2017, four employees at a Ford plant in Missouri tried out the EksoVest by Ekso Bionics, an unpowered, adjustable exoskeleton vest that can help workers do things like install carbon cans on cars suspended above them at a rate of 70 cars/hour. The United Automobile Workers Union actually paid for the trial to see if exoskeletons could really reduce common injuries among autoworkers.

Ford has been interested in wearable robotics since 2011, particularly for preventing shoulder injuries, which take the longest to recover from. The ROI is there: If one $5,000 EksoVest lasts three years, the cost comes out to 12 cents/hour/employee. That’s around the same price as a pair of disposable gloves and far less than the cost of even just one shoulder injury.

Just last month following 16 months of testing, Ford went into deployment mode, ordering 75 EksoVests for employees all over the world. This is the largest order of industrial exoskeletons ever placed and the first step in Ford’s plans to launch exoskeletons in factories worldwide.  

The EksoVest provides up to 15 pounds of lift assistance and support (per arm) during the overhead tasks Ford assembly line workers perform millions of times a year. Additionally, Ford is testing a motion-tracking bodysuit and camera solution at one of its plants in Spain, with the goal of making data-driven modifications to workstations and vehicle production processes that reduce physical stress.

Boeing

For as long as Ford, Boeing has been experimenting with exoskeletons to address the problems automation can’t solve. Wiring a Boeing 777, for instance, a task so complex only a highly skilled human can perform it, is a perfect opportunity for an exoskeleton. What attracts Boeing to exoskeletons are not only rising insurance premiums but also the possibility of improving the lives of its technicians who train for years to do their jobs and whose absence or retirement would be a hit to the aerospace giant’s productivity.

Though still in the experimental phase, Boeing has been running pilots to match the right exoskeleton to the right type of work and studying years of safety data to see where injuries are most likely to occur. Boeing mechanics in South Carolina have actually gone through training on the EksoVest, as Boeing hopes to roll out the tech to more workers in 2019. Apparently, Boeing employees love the exoskeletons.


Challenges still ahead

For every new type of PPE (Personal Protective Equipment) there is process of adoption, and it’s no different with exoskeletons. The wearable robotics space is evolving fast; prices will continue to fall and the exoskeletons themselves will become lighter and more powerful over the next three to five years, but it takes a lot of testing! A good sign is the interest of the ATSM International, a body that sets manufacturing standards and has created a special committee of 90 organizations focused on exoskeletons and exosuits. Just as walking in areas of a job site without the proper PPE is forbidden, one day workers on construction sites and in warehouses and manufacturing plants will be forbidden to operate tools without the appropriate exoskeleton.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-11, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Tickets now available at www.aweeu.com.

 

Image source: Digital Trends

Let Your Customers and Workers Choose the Right XR Use Case for You

Here’s a common misconception: The more robotics and Artificial Intelligence (AI) advance, the more expendable human beings become in the workplace.

Although Forrester Research predicts automation will displace 24.7 million jobs by 2027, it’s irrational to fear that robots will ultimately replace all human workers. For as robotics and AI improve, so do technologies for empowering human workers. I’m talking about wearable technologies like augmented and virtual reality headsets as well as wearable robotics (exoskeletons) that enable humans to work longer, quickly train for new jobs, and perform in sync with automation. You could even argue that as automation progresses, human workers will become more indispensable to enterprises—while robots may assume the dangerous and repetitive aspects of work, unmanned technology won’t be able to address every productivity issue or match distinctly human capabilities like human dexterity and imagination.

When it comes to embracing disruptive technology, successful organizations take a “user is king” approach, finding out pain points in the business directly from the source, i.e. workers or customers who are expected to use or benefit from the technology. Whether it’s getting a group together for a brainstorming session, including members of the workforce in the proof of concept stage, or simply encouraging a company culture where employees feel comfortable sharing their ideas with leadership; there is no one better than the user herself to determine where and how to digitally transform.


“Treat employees like they make a difference, and they will.” – SAS CEO Jim Goodnight


Two companies have gone beyond merely asking for user input: KLM Royal Dutch Airlines established a physical hub to foster workers’ original ideas for using emerging technologies; while Lowe’s went directly to the customer, applying “young” immersive tech to age-old home improvement shopping challenges. Essentially, KLM and Lowe’s are letting their employees and customers come up with the use cases in which they’re investing.

KLM Royal Dutch Airlines

In 2016 at its Amsterdam Airport Schiphol East base, KLM Royal Dutch Airlines opened its Digital Studio, a creative space where workers from all areas of the airline’s business are encouraged to come and innovate. Here, employees can put forward ideas on how to use digital technologies like AR and blockchain in their work, and see their ideas fast-tracked into development and then, hopefully, into practice.

The Digital Studio, which currently has room for 200 workers, is based upon Dave West’s Scrum Studio concept of an environment where high-performing teams, physically separated from the main business, can fast-track projects. It’s very hard to change large legacy companies like KLM from within: The larger the organization, the higher the chances of disruptive technologies ending up in pilot purgatory and innovation suffocating in red tape between divisions and levels of management.

Though most of the current projects at KLM’s Digital Studio are still in the experimental stage, a handful have turned into practice. The studio has embraced KLM employees of all different backgrounds and roles, who may not have otherwise had the opportunity to take their transformative ideas further. Take Chris Koomen, who was stationed in KLM’s engineering and maintenance division: Chris had an idea for using VR, so he joined the Digital Studio and has been a part of integrating VR for training aircraft crew. Another idea pitched by a KLM mechanic involves using AR in aircraft and engine maintenance.

Every four weeks, the Digital Studio hosts a demo of what it’s working on to interested observers. The lesson here is don’t hide emerging tech in a lab unless you’re going to let the user in. Show employees what’s out there, give them resources, and let those who perform the job every day tell you how to transform the business.


“The customer experience is the next competitive battleground.” – Jerry Gregoire, former VP & CIO of Dell


Lowe’s

Despite the impression one might get from HGTV, building things is not easy for the non-professional. Planning a home improvement project, shopping for building materials, executing the project…what’s most difficult for the average consumer, even a hardcore DIY-er, is visualizing the final product. But it seems a solution has finally appeared in the form of XR (AR, VR, MR), and all the major home improvement brands recognize the potential. There are now apps for virtually measuring your surroundings and picturing all kinds of design options and home products in your real space. And it’s not just the Lowe’s and Home Depots of the world—architects and engineers have seized upon VR to help clients visualize new structures, real estate agents are giving virtual home tours, and even Gulfstream Aerospace employs XR so its clients know exactly what their custom jets will look like when delivered.

Lowe’s has been conspicuously innovative in making the benefits of XR available to its customers. For the last four years, powerful new immersive technology design and shopping tools have been brewing in Lowe’s Innovation Labs. Josh Shabtai, Director of the Labs Productions and Operations, says he looks at those problems that keep resurfacing. Since the introduction of Holoroom How-To in 2014, Lowe’s Innovation Labs has rolled out an impressive suite of mobile apps / pilot projects to gauge customers’ comfort level with XR, including Lowe’s Vision, In-Store Navigation, and View in Your Space.

Lowe’s is trying to solve the classic pain points of home improvement shopping by giving customers the ability to see with the eyes of a contractor or interior designer, determine whether products fit in their space, virtually tile a bathroom, operate a power tool, and more. By focusing on customer problems, Lowe’s has made some of the strongest cases for consumer AR and VR to date. The retailer’s steady flow of practical immersive experiences even landed it at the top of a list of most innovative companies in AR/VR by Fast Company!


With each employee-generated idea, KLM not only gains a potentially transformative technology solution but also primes its workers for the change to digital—there’s no need to convince employees to use solutions they helped conceive of. And with each application, Lowe’s refines the XR tools that future consumers will use to visualize spaces and learn new skills; ideally positioning itself to scale when the time comes, build customer loyalty and future-proof its business from online competition.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-10, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Tickets now available at www.aweeu.com.

 

Image source: Lowe’s via Road to VR

Over 20 Use Cases of Smart Glasses, VR Headsets, and Smartwatches at Airports

If going through airport security is a flyer’s biggest pain, then capacity is the airport manager’s living nightmare: Airports around the world today are hard-pressed to process more passengers and cargo than their terminals were originally designed to manage, and projected air traffic growth indicates no coming relief. Most American airports were built between the 1950s and 1970s. Take Chicago O’Hare International Airport: By 1975, O’Hare was the world’s busiest airport, handling 37 million passengers a year. In 2017, more than double that number – 79.8 million people – traveled through O’Hare, along with 1.9 million tons of cargo!

Capacity issues have led to a multibillion-dollar infrastructure crisis in the airport industry, not to mention low customer expectations on the part of airlines and airline passengers (airports’ two main customers). It’s not enough for the industry to work on quickly processing travelers and avoiding delays; improvements and solutions are needed for the end-to-end travel journey, as well, including the terminal experience and flying between destinations. The pressure is on for airports to invest in new technologies that improve the efficiency of airport processes and reduce service disruptions; thereby allowing passengers to spend less time in queues and more time enjoying airport facilities.


Ideas on the ground and on board:

The airport industry first began toying with wearable technology with the release of the original Google Glass in 2013. Early on, a number of airlines trialed smart glasses at the boarding gate and offered digital boarding passes for consumer smartwatches. More recently, the use of wearable augmented and virtual reality devices by airport and airline technicians to train, perform maintenance, and receive remote support has gained traction. Additionally, the growing popularity of AR and VR in architecture, engineering and construction has implications for the future of airport renovations and new airport design. Other ideas floating around look to a future in which travelers regularly use wearables and even lightweight smart glasses to receive real-time flight notifications, directions to their gate, and pre-flight shopping and dining promotions.

In IATA’s 2017 Global Passenger Survey, 85% of those surveyed indicated they would be willing to give up more personal data in exchange for faster process checks and more personalized service at the airport. As consumers become increasingly receptive to sharing wearable-generated biometric data and are exposed to augmented reality via smartphones; ideas like replacing traditional travel documents with personal wearables and implementing AR wayfinding in airports seem less and less far-fetched.

The history of wearable technologies in the airport industry:

From supporting airport ground operations with AR to in-flight VR entertainment; the airport industry has experimented with wearable technologies throughout the travel experience. In fact, airports and airlines gave us some of the earliest – and incredibly imaginative – use cases of Google Glass Explorer Edition, arguably the device that set enterprise wearables in motion. Let’s look back:


Early trials:

Virgin Atlantic’s 2014 trial at London Heathrow Airport – in collaboration with SITA – included both Google Glass and the Sony SmartWatch 2. Staff at the airline’s premium entrance at Heathrow used the devices to view individual passenger information and real-time travel updates. This allowed agents to greet first-class passengers by name, process them quickly for their flights, and provide the most up-to-date travel information. The following year, Virgin partnered with Sony to equip its Heathrow engineers with the Sony SmartWatch 3 and Sony’s SmartEyeglass to test out real-time job notifications and live video streaming to remote expert technicians.

Around the same time, Vueling, Iberia, and Air Berlin launched smartwatch boarding passes for early Pebble and Samsung smartwatches. EasyJet and British Airways followed with Apple Watch apps allowing travelers to receive real-time flight updates and board their planes with just a flick of the wrist.

Japan Airlines made another early attempt to prove Google Glass in maintenance, with airline personnel wearing Glass on the tarmac at Honolulu Airport so that experienced staff at headquarters could inspect planes remotely. Airports got into the game, as well; including Copenhagen Airport, where duty managers used Google Glass to document issues and answer travelers’ questions on the spot, and London City Airport, which considered how Glass might be leveraged in its operations. Allegiant Systems, a software company, also developed a proof of concept in which airline staff used Vuzix smart glasses to create a more personalized passenger experience. Scenarios included using the glasses at security, at the gate, and at the door to the aircraft to identify passengers (facial recognition tech) and to view preferences of frequent First-Class fliers in the air.

While these trials made an early splash for wearables, most did not amount to full-blown adoption. This was especially true in the case of smartwatches. Smart glasses did, however, enable workers to keep eye contact and better engage with customers.


Later use cases:

By 2017, the idea of using smart glasses to improve airport processes no longer seemed so futuristic. That year, SITA worked with Helsinki Airport to explore visualizing airport operations with the Microsoft HoloLens. Using the feed from its Day of Operations software (already in use by Helsinki Airport), SITA reproduced the airport operational control center (AOCC) in mixed reality. This made for a new way of visualizing and analyzing the airport’s complex operational data (aircraft movement, retail analytics, etc.) to make decisions. It also allowed remote viewing of the AOCC in real time.

Along with delays, heavy commercial passenger and cargo traffic can produce unexpected changes in an airport’s operations that put the airport’s facilities to test. Cincinnati / Northern Kentucky Airport (CVG), which sees 6.7 million passengers a year, turned to wearable technology when quality metrics revealed that the state of the airport’s restrooms had a great impact on traveler satisfaction. In what became a successful use case, CVG installed counting sensors in its restrooms and gave housekeeping staff Samsung Gear S3 smartwatches with Hipaax’ TaskWatch platform. The sensor data helped to better direct staff resources, so instead of following a standard cleaning schedule, housekeepers were notified in real time via smartwatch when a nearby restroom required attention.

Out from behind the scenes in 2017, AR and VR began to make more public appearances in the airport industry. Heathrow Airport worked with Ads Reality to create an augmented reality app for entertaining and distracting children – some of them first-time travelers – during the long wait to board a flight. As an added benefit, tracking the triggering of the AR markers through the airport’s five terminals also tracked foot traffic, revealing busy areas where customer experience could be improved. Qantas Airways was actually the first to introduce VR headsets, partnering with Samsung in 2015 to bring the devices to select first-class cabins and lounges for travelers to virtually experience some of Australia’s greatest attractions (like the Great Barrier Reef). The airline has since released a multi-platform mobile app showing off Australia’s beautiful scenery, with the goal of inspiring consumers to book with Qantas.

Using VR as a sales tool has been popular at other airlines, too, including Lufthansa and KLM Royal Dutch Airlines, which offer VR experiences of destinations and the aircraft itself to encourage seat upgrades. The KLM Flight Upgrader is a VR experience enabling people on budget flights to “pretend” to fly KLM, complete with in-flight movie, reading your favorite newspaper, and a virtual meal served by a caring crew. Singapore Airlines, Eithad Airways and Finnair have also experimented with VR to show off their airplanes, cabin classes, and travel destinations. Very recently, Air New Zealand announced a partnership with Magic Leap and Framestore to develop MR content highlighting New Zealand as a travel destination. The airline has also trialed HoloLens for displaying key passenger information like preferred meal choices and emotional state to flight crew and Google Pixel Bud Bluetooth earphones to help employees with live translation onboard and in the airport terminal.


Most recent

Late 2017 saw larger and more ambitious trials of wearable technologies at airports. Changi Airport, one of the busiest in Asia, announced plans to pilot 600 pairs of smart glasses among its staff to improve the accuracy, efficiency and safety of cargo and luggage handling. Using its camera to see visual markers and labels on luggage and containers, the glasses project information like loading instructions on top of the user’s real-world view, shortening loading time by as much as 15 minutes. This will create a competitive advantage for the Changi’s airline customers, while video streaming will allow real-time monitoring of ramp handling operations.

Hamad International Airport signed a Memorandum of Understanding with SITA, providing a framework to trial biometrics together for seamless identity management across all key passenger touch points at the Doha airport, along with robotics, blockchain, AR and VR.

Though Copenhagen Airport was actually the first to provide an AR wayfinding tool back in 2013, Gatwick Airport installed 2,000 beacons to enable the same in 2017. At Gatwick, through which 45 million people travel every year, passengers can use their smartphones to view AR directions to wherever they need to go. Helping people navigate the airport prevents minor disruptions resulting in late departures and missed flights. It’s also the perfect use case for consumer AR glasses, allowing you to travel heads-up to your gate with your hands just on your luggage.

SkyLights, maker of immersive, cinematic in-flight entertainment (IFE), has content partnerships with the likes of 20th Century Fox, DreamWorks, and BBC. Last year, Air France and Corsair trialed SkyLights’ Bravo Evo VR headset in some business class cabins. In the spring of this year, Emirates and Eithad announced their own trials of the new Allosky headset in select first- and business-class lounges. Japan Airlines and JetFly have also tested the headset, which can store up to 40 high-def films including five VR titles. Such VR entertainment could transform the cabin experience.

In the last few months, both Philippine Airlines and Lufthansa have revealed they’re using VR for training. Lufthansa is just the latest in the aviation world to consider VR for pilot training. The German airline already uses VR to teach flight attendants how to search the aircraft for foreign objects and is now seeking to keep up with the growing attrition rate among its 10,500 pilots. Philippine Airlines is applying the technology to cabin crew training, which, unlike flight simulators, has evolved very little over the years. The first batch of cabin crew trainees to use VR are now being deployed to select craft.


Future

Whereas the use cases for wearable technologies in industry – on the construction site, in the factory, etc. – are clear, consumer-facing industries like retail, financial services, and travel are less certain about how to go digital. There’s no shortage of experimentation: In the last five years alone, the airport industry has turned to wearables to make boarding more convenient, improve the in-flight experience, better understand airport operations in order to correlate events and manage staff, speed up flight inspection and turnaround, entice consumers to upgrade their travel, distract those waiting for flights, and more.

Wearable and immersive tech is accelerating across the industry, most recently popping up in air traffic control, and even carving out new revenue streams as in the case of First Airlines, the world’s first virtual airline based in Ikebukuro. Actual consumer-facing use cases, however, are not really sticking; but what has been consistent from trial to trial ever since gate agents for Virgin Airlines first put on Google Glass is that feedback is largely positive—consumers generally support technology that will speed up and simplify the airport experience. IATA’s Global Passenger Survey confirmed this last year. Passengers may not be aware of wearable notifications flying across airport hubs but they do notice when airline employees look them in the eye, know the answer to all their questions, and predict their beverage choice before the cart reaches their row. 

EHS 2.0 with Digital Advancement: How General Electric is Digitizing Safety

Improving worker safety is a mission that never seems to end. Hazards in the workplace are always evolving, as are the gear, tools and methods developed to mitigate risks. Our understanding of safety in the workplace is also evolving: For instance, though it’s hard to quantify, we know that safety has a great impact on productivity. Nevertheless, according to Nationwide, 51% of businesses don’t have an Environmental, Health and Safety (EHS) specialist on staff while 38% don’t offer any formal safety training.

Though wearable technologies, including body-worn sensors, heads-up displays and robotic suits, are being touted as promising safety solutions for industrial workers; it was only two years ago that the U.S. Bureau of Labor Statistics reported the highest number of work-related deaths in nearly a decade. The rise of fatal injuries on the job, however, does not mean that wearables aren’t ready for primetime or that companies aren’t using them. It means organizations are not yet leveraging these technologies to their full capacity as part of a larger, connected and proactive system for safety in the workplace.

There are, in fact, effective wearable safety devices today. According to Sam Murley, EHS Digital Acceleration Leader at GE, General Electric is exploring and deploying them in nearly 40 pilot and deployment programs around the globe: “These are things that can save lives today, the same way insulated gloves and hard hats do…These technologies don’t live in labs; they’re ready to go. The obstacles lie in communicating the value when in place and identifying new stakeholders to help drive broader adoption.” Plenty of GE-league companies are, at the very least, piloting wearable solutions—enough so that for the first time the EWTS 2018 program will devote an entire afternoon track to safety and training case studies. The devices range from simple sensor-embedded bracelets to VR headsets and partial exoskeletons, and cases are springing up across all sectors: In addition to Sam, speakers from retail giant Walmart and multinational brewing company Molson Coors will share first-hand experiences of using wearables to increase safety in their organizations.

A number of factors could explain why wearable safety tech isn’t exactly making waves in enterprise: Lack of awareness (a lot of the focus is around AR/VR), the challenges of choosing the right use case and gaining internal support and funding, the complexity of Big Data (translating raw wearable data into actionable safety insights), and even generational differences (Millennial business owners are leading the adoption of connected technologies for safety). While there is a lot of buzz around augmented and virtual reality devices for heads-up information, training and remote support (all of which influence the user’s safety); wearables that track employees’ physical condition and blend into their work attire are less glamorous and less obvious when it comes to showing ROI. Take something like location tracking: A simple GPS-tracking band coupled with geofencing could help keep employees out of known hazard zones, but how do you quantify that in terms of cost savings? More exciting tech like exoskeletons poses the same challenge: If you have 10 less injuries than last year after giving exoskeletons to a group of welders, what is the ROI?

When asked to give advice to EHS managers just beginning to look at emerging technologies, Sam Murley said “Know what problems you’re trying to solve and leverage what has been done in the past.” Taking that advice, here are a few recent initiatives at GE that provide not only example use cases but also best practices and a look into the future of wearable and other emerging technologies in EHS: In the very near future…we’ll completely digitize the way risks are managed…Workers will have a digital toolkit of wearables at their disposal as required PPE [personal protective equipment] as well as optional tools they’ll use to augment some of their work. As long as it doesn’t over-innovate the user and has data value, EHS in organizations could potentially get to zero quo.” – Sam Murley, GE


Working with and wearing robots:

Robots are increasingly taking over dangerous and repetitive tasks in the workplace. At GE, the choice between deploying a companion robot with a human worker and augmenting the worker with an exoskeleton comes down to “how hazardous the task is and how long you need the human brain involved in the process.” In the case of the dangerous and dirty job of inspecting a dark chemical storage tank, GE has been testing a 4-foot-long, snake-like robot made by Sarcos Robotics. Equipped with magnetic tracks, ‘Guardian S’ can slither up and down the walls of the storage tank and across the debris- and grime-covered floor, using embedded sensors in its head and tail to perform the inspection and share information with workers outside the tank. There’s no need to stop the operation or have rescue services on standby.

If you’re wondering what happens to the workers relieved of this hazardous task by Guardian S; they become the operators and decision makers or are otherwise reassigned to less dangerous jobs. GE’s interest in robotics is not about replacing humans but rather augmenting them, allowing workers to complete tasks in hazardous, inaccessible, and unstable environments without putting themselves at risk. Not only does Guardian S keep human workers safe; it’s also better and faster at its job. The human-managed technology can even be customized with features like magnets, boom cameras, and ultrasonic thickness sensors to perform tasks in a variety of work environments, from power-generation facilities to oil sites and wind turbines.

Sarcos Robotics also makes a pair of track-mounted robotic arms to help users lift heavy objects and is working on a load-bearing exoskeleton to enhance human strength. GE is very interested in wearable robotics to improve and simplify EHS and increase productivity across its operations. Along with other big companies like Delta and BMW; GE has joined Sarcos’ new Exoskeleton Technical Advisory Group (X-TAG), created to advance exoskeletons in industry. The technology has enormous potential: Robotic suits will match human intelligence and improvisation with machine strength and precision. Workers’ physical performance and wellbeing will improve; less manpower will be required to do the same amount of work; and workers’ compensation, healthcare and downtime costs will decrease.


A proactive stance on safety with AI & wearables:

When asked what makes a killer application of new technology at GE, Sam Murley replied, “When you have edge-to-edge systems that can protect the worker directly and push data from the worker and environment back to a system to intervene…Those are killer platforms and there are a few out there that we’re using right now.” GE began piloting such a platform in 2016—specifically, two injury prevention systems by StrongArm Technologies that combine wearables, data analytics and machine learning (AI).

GE workers at several sites worldwide wore ErgoSkeletons (like a cross between a smart harness belt and a backpack) while lifting and carrying heavy loads, performing repetitive tasks, and during highly complex procedures. These passive exoskeletons work by redistributing weight from a central point of the user’s body across stronger areas of the body or by supporting arms and legs during overhead work, thereby preventing back, shoulder, arm, and leg injuries while increasing product quality. The exoskeletons can be worn with or without StrongArm’s FUSE ergonomic sensor which tracks the user’s ergonomic movement through their data analytics software and provides live coaching via haptics for safer posture and physical technique.

In addition to getting workers to perform better and use their full body (relieving strain on the arms and lower back), the solution generates real-time data that can give insights into EHS at GE. With AI, GE managers can isolate problematic ergonomic areas and make preventative changes to the work environment as well as figure out which workers need intervention and training.


According to IBM and Cisco, 2.5 quintillion bytes of data are created every day, and most of it is never captured, analyzed or used. Wearable technology can provide gigs and gigs of safety-related data but if that data lives in a vacuum, it’s wasted: “I think the most successful technology gives you immediate feedback while measuring some activity in the human body or environment and tying it back into a decision-making platform.” – Sam Murley, GE   

GE is taking a well-rounded digital approach to EHS, using wearable and other emerging technologies to digitize safety. Beyond robotic enhancements and ergonomic sensors; heads-up displays, VR headsets, lone worker management devices, hazard-sensing bands, and even drones are presenting EHS pros with new ways to protect and empower workers, make training more effective, reduce injury and costs, and enable data-driven decision making on both a micro and macro level.

*For more expert insight on how GE is finding solutions, setting up pilots and working through deployment issues, read our full interview with EHS Digital Acceleration Leader and EWTS 2018 presenter Sam Murley here.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-10, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Apply to exhibit, submit a talk and buy Super Early Bird tickets now at www.aweeu.com.

 

*Image source: Sarcos Robotics

Making Your Next Flight Safer and Smoother with Wearable AR+VR

From building the actual plane to the in-flight experience, wearable XR (AR, VR, MR) devices have a role to play in multiple professions within the commercial aviation industry. Employees whose jobs affect every aspect of one’s trip, including aircraft maintenance workers and flight crew can make use of wearable XR technologies to ensure the end goal: A safe and satisfied traveler. Find out how XR might be used on the ground and in the air when you go on your next business trip or vacation:


On the Ground: AR for Assembly

Both Airbus and Boeing employ augmented reality (AR) glasses in the aircraft assembly process. Airbus workers follow plans directly in their field of view, superimposed on the plane’s interior during cabin installation. They use the same solution to check the accuracy and quality of their work (image recognition technology and artificial intelligence at work); while Boeing employees use smart glasses to view a heads-up, hands-free roadmap for wire harness assembly over their real-world view. In each case, AR functions to form a stronger connection for the user between textual or diagrammatic instructions and the real working environment.

Using AR glasses with software by Upskill helped Boeing save tens of millions of dollars, but it’s not all about money: By helping employees work faster without error, aircraft manufacturers can deliver defect-free planes to customers quicker. Airlines and other buyers thus receive faster-built, higher quality aircraft and parts that breakdown less often. Aircraft and parts engineers can also use AR and VR devices to collaborate on new designs from anywhere in the world, sharing and testing ideas and even simulating the assembly or installation process to foresee issues. New XR platforms are only making this collaboration easier.


VR for Training

After assembly comes maintenance: It can take up to eight years to train and license an aviation maintenance professional. This includes aircraft OEM mechanics and airline technicians who perform safety checks, prepare aircraft components for flight, make repairs, and more. While accessing real aviation equipment for hands-on training is costly and difficult, in VR trainees can practice skills in a realistic, accident-proof immersive environment with virtual parts and tools. For instance, a mechanic wearing a VR headset could walk inside an engine and examine its parts as well as simulate different repair scenarios. With advanced audio and haptics (like a haptic suit), the trainee could even hear the noise and feel the motion of the engine, better preparing him for the real thing.

A recent study at the University of Maryland found that people actually learn and retain information better through immersive experiences compared to using a computer or tablet. Enterprises are also finding VR to be superior to reading a manual, watching videos, or taking a lecture-style class. While not an example of full immersion, Japan Airlines used Microsoft’s HoloLens to improve training for its engine mechanics—in place of physical hangouts, trainees learned all the engine components by working on a virtual engine in mixed reality.

Learning by doing with AR is effective and cost-saving for training, as well. Aviation maintenance workers can learn on the job without risk of error by using heads-up, hands-free smart glasses to view fool-proof text and visual aids over their work. The technology can even validate each step of an inspection or repair to prevent errors. Static instructions can become interactive, with virtual arrows and labels appearing on top of real-life aircraft equipment, showing the user where parts and tools should go. The result: Faster training without sacrificing accuracy or quality = quicker maintenance, fewer flight delays, and happier travelers.

Once the engine has been overhauled, the plane is ready for service. Expensive and logistically challenging, pilot training is another opportunity for VR. In recent years, the burden of paying for flight school has fallen onto pilots themselves. The $60,000-$80,000 price tag explains why flight school enrollment has fallen in the U.S., leading to a growing shortage of trained pilots not all that unlike the troubling shortage of skilled workers in other industries. CAE forecasts that over 255,000 pilots will be needed in the global commercial aviation industry by 2027, yet less than half that number has even begun training. Some carriers and manufacturers are making efforts by sponsoring aspiring aviators or expanding their flight training services, but the cost and time is still too great.

For industries with large, complex and expensive equipment like aviation, VR offers the closest thing to hands-on training. Virtual reality, capable of simulating almost every aspect of flying, feels more real than many current flight simulators (essentially stripped airplane cockpits with screens for windows) and is adaptable to all kinds of scenarios. Rookie pilots can walk around the cockpit, interact with the plane’s controls, and even practice an emergency landing, with tactile feedback to increase the sense of realness and help build muscle memory. VR is already finding its way into flight training programs: Airbus, for one, has been able to reduce training time and train more people in limited space using VR to supplement training in real aircraft; while Future Visual created a simulation for Oculus which takes pilot students through the entire pre-flight process. And VR isn’t just for ground crew and pilots; cabin crew and even airport staff training could incorporate immersive tech, as well.


In the Air: AR for Guidance

The length of runway required for a standard aircraft to get off the ground can be calculated, but what if there are unexpected failures? What if the engines aren’t working to full capacity or the takeoff field is wet? Will the aircraft still reach the required speed for takeoff? According to Boeing, 13% of fatal aircraft accidents occur during takeoff. In fact, pilot errors, not maintenance failures, are responsible for the vast majority of all aviation accidents. This isn’t surprising considering it’s largely left to the pilot’s subjective opinion to determine a response when something goes wrong.

The problem lies in how information is presented to the pilot inside the cockpit. It’s hard to focus on flying when you have to read and quickly analyze the text on a bunch of small instruments and screens all around you. AR technology can display this information in a more intuitive format. For instance, with smart glasses, information like pre-flight checklists, step-by-step instructions, current weather and air traffic information, even a 3D graphic of the takeoff path can appear overlaid in a pilot’s vision before takeoff. Aero Glass actually has a solution that displays flight path and instrument data to small airline pilots wearing smart glasses. The same cockpit information a pilot might get using physical controls and touch screens can be retrieved instead by voice command; and when a snap decision needs to be made during a flight, AI technology can pick out the most relevant information to display to the pilot.


XR in Flight Service?

The benefits of integrating AR glasses and VR headsets into aircraft assembly and technician training are tangible today, but at this point airlines have merely proposed ideas for using XR in the air without seriously investing. This is probably due to the consumer-facing nature of the in-flight experience. Providing flight attendants with smart glasses to interact with passengers or offering VR headsets as in-flight entertainment are not critical use cases like the need to quickly train thousands of new pilots. Moreover, the timeline for mainstream consumer use of AR and VR is still unclear.

XR hasn’t yet transformed the experience of flying, but some airlines are considering it. Air New Zealand, for example, had its crew members try out HoloLens to expedite and provide more tailored customer service during the flight. To cater to individual passengers, flight attendants might access their flight details (to help make connections), food allergies (to personalize meals), even their emotional state (facial recognition tech). Air France trialed VR headsets for in-flight, immersive entertainment; and though not in the air Lufthansa has used VR to sell upgrades to premium class right at the gate. Who knows? Maybe one day those safety instructions in your seat pocket will be replaced by a virtual reality video. In the meantime, rest assured that XR technologies are improving aviation operations behind the scenes, from the hangar to the cockpit.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-10, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Apply to exhibit, submit a talk proposal and buy Super Early Bird tickets now at www.aweeu.com.

Workplace implantables–Yes, we’re going there.

Are implantables ever going to take off in the enterprise beyond healthcare? Will we ever use them at work? Are workplace implantables a future reality?

Implantables are sometimes mentioned as a category of wearable technology, but is a future in which technology becomes more integrated with our biology, in which we voluntarily have technology embedded beneath our skin at work, possible?

Technological advancements have led to the miniaturization of both monitoring devices and power sources, but so far implantables have only really been discussed in terms of medical applications. Devices like pacemakers, insulin pumps, etc. are well-known; and doctors are exploring new Internet-connected implantables capable of capturing vital health data from patients and in some cases administering (drug) treatment. Outside of healthcare, what function might a tiny connected device in the human body serve for workers?

Chip implants have survived years of science fiction but they’re not brand new. The first implantable RFID chips for humans were patented in the late 90s. Today, there are only a handful of use cases of implantables in the workplace, specifically microchip implants for access control, payment, and security. There are isolated cases of tech enthusiasts and self-professed biohackers who have adopted chip implants for convenience or just to embrace new tech; and several businesses – mainly in Europe – are interested in the technology and have even begun implementing microchip implants to replace traditional ID cards and badges in the office. It is estimated that between 3,000 and 10,000 people in the world are currently chipped, but there is no record yet.

So, what exactly are microchip implants? Implantable microchips are mainly passive, read-only, non-GPS-tracking devices with a small amount of stored information that can be accessed by an appropriate reader. They communicate with reader devices over a magnetic field using either RFID (radio frequency identification) or NFC (near-field communication), a branch of high-frequency RFID. RFID is the same technology used to track pets and packages; and you probably already carry it in your pocket—most mobile phones today and many credit cards are equipped with the technology, and U.S. passports have been embedded with RFID chips to deter fraud and improve security since 2007. A simple microchip implant might store an ID code that’s processed by a reader to permit or deny access to a secured area.

Much of the fear surrounding human chip implants arises from misinformation, pop culture, and paranoia. The biological risks are no worse than those of body piercings and tattoos. In addition, the chips are compatible with MRI machines, undetectable by airport metal detectors, and not difficult to remove. People have been augmenting their bodies since ancient times and wearing pacemakers for decades now. It’s not a huge leap from having this technology on our bodies via phones and contactless cards to putting it under our skin to allow us to move around cities and offices with greater convenience.

Security and privacy concerns are natural. You hear the words “microchip implant” and visions of a dystopian future in which all of our movements are traced and bodies can be hacked to steal personal data immediately come to mind. While the privacy and ethical issues will likely grow as microchips become more sophisticated, today’s smartphones send far more information about you to Google, Apple, and Facebook than RFID implants can. Your internet browser history is a greater threat to your privacy, I assure you.

That’s not to say RFID chip technology is 100% secure. At least one researcher has shown that microchip implants are vulnerable to malware. Security concerns include eavesdropping, disabling and unauthorized tag modification, not to mention employee rights and religious concerns. Would employers abuse the tech? Theoretically, they could. Though the chips don’t store much information or have their own battery or power source (they remain inactive unless within the field of a reader device), it would be possible to use the data to learn about a person’s behavior. Depending on what the implants are used for, employers could see how often you show up to work, the number of bathroom breaks you take, the length of your lunch break, what you buy, etc. Most employers are already able to monitor such habits with company-provided smartphones and swipe cards. On the upside, it’s not possible to lose a microchip implant like you might another form of ID; but on the downside, you can’t claim that the data generated by the chip didn’t come from you.


How might microchip implants be used in enterprise and who is using them today?

In 2016-2017, a number of human microchip experiments and pilot (pet) projects received media coverage. DARPA, the research arm of the US Defense Department, said it was working on implanting chips in soldiers’ brains to enhance battle readiness, boost performance, and heal trauma. (Yes, that does sound very freaky and sci-fi.) There were also press reports suggesting Mexico’s Attorney General used RFID chips to enhance security but few details are known. The most traction has been in Europe, where even a chain of Swedish gyms has embraced the technology as an alternative membership card.

Epicenter, a digital startup workspace in Stockholm, began making NFC chip implants by Swedish tech firm Biohax available to employees in 2015. Of around 2,000 workers at the hub, 150 have been voluntarily chipped (as of last April). This is how it works: When activated by a reader, a small amount of information flows via electromagnetic waves between the implant and the reader. The main benefit is convenience: In addition to unlocking doors, the chips allow workers to share digital business cards with Android users, buy vending machine snacks, and operate printers with a wave of the hand. Outside the company, the implants can be used at any business with NFC readers.

The Swedish rail operator SJ simply made digital train tickets available to its loyalty program members who were already microchipped either through their employer or by their own choice. Instead of paper tickets and travel cards, conductors would scan passengers’ biometric chip implants, saving a few seconds. SJ expected about 200 people (of 2,000 reportedly chipped Swedes) to use the new, more efficient and sustainable service by connecting their membership number to the microchip.

The first American company to try Biohax’s grain-sized NFC chips was Three Square Market. At a “chip party” hosted by the Wisconsin company, over 50 employees out of 85 volunteered to be implanted. 32M runs vending kiosks in over 2,000 break rooms and other locations around the world. Ultimately, the company sees the technology as a future payment and identification option in its markets; and it could enable self-service at convenience stores and fitness centers. For now, 32M is testing microchips as a perk for employees—a multipurpose key, ID and credit card allowing them to open doors, buy snacks, log into devices, use office equipment, and store health information.

The appeal of implantable RFID and NFC implants comes down to convenience and minimal risk of loss. While the most popular application seems to be replacing physical keys, access cards and passwords for easy entry and increased security, other uses include identification and payment. Chips can also be programmed to suit a business’ unique needs. Unlock your smartphone, start your car, arrive at your office building and enter the parking garage, pay for your morning coffee, log into the computer at your desk, use the copy machine, share your business card with a potential partner or customer, store your certifications and qualifications, access a high-security area, turn on a forklift, even store emergency health informationall seamlessly, without friction, by having one tiny device implanted between your thumb and index finger. Would you volunteer for that level of convenience, for an easier and more secure way of opening doors and logging into devices?


Are microchip implants the future, another node in the connected workplace that happens to be beneath the skin? Biohax says it has supplied chips to dozens of companies and over 1,000 professionals in finance, healthcare, government, science and technology around the world. Most chip users today are involved in the tech industry, but the number of people experimenting with the technology is growing. (You can buy a self-inject RFID chip kit online from Dangerous Things. Warning: It’s not government-approved.) Then there’s Anthony Antonellis, an artist who implanted an RFID chip in his hand to store and transfer artworks to his smartphone; and Autodesk, who is experimenting with embedded sensors to turn human skin into a smartphone display. Grindhouse Wetware, a Pittsburgh-based biohacking startup, is pursuing powered implants—”subdermal devices in the body for nonmedical purposes” like a temperature monitor that can control a Bluetooth thermostat. Contacts allowing you to take a photo with a blink of the eye could be next.

In a recent survey, 31% of UK employees said they would quit if asked to wear a chip, so it’s fair to say that RFID microchipping of employees is still really far out. For enterprises who do want to experiment or ultimately adopt, here are some suggested precautions:

  • Make it optional: Implants should not be a part of any human resources policy or employment contract. It should be a choice, with the option to remove the chip and destroy its data history at any time.
  • Make sure it really feels optional: Assure there is no pressure to adopt and those who decline a chip implant don’t experience any disadvantage. Offer the same functionality perhaps in a wearable wristband option as 32M has done.
  • Make sure none of the information stored or collected is more than could be found in a smartphone.
  • Focus on controlled environments: Ex. An employee cafeteria. This makes everyday transactions in the workplace easier while reducing the chip’s usefulness to a hacker
  • Use a second security factor: Ex. Combine a cryptographic proof with a biometric option like a fingerprint or retinal scan. Add another layer of security with a Personal Identification Number (PIN) or facial recognition.
  • If the technology ever becomes standard or even required in enterprise, there need to be appropriate exemptions for religious, moral and other beliefs, individual health issues, etc.
  • Keep data protection laws in mind. Consider any information that might be collected or inferred from the data such as access info, patterns of use, etc.

Microchip implants remain a cool experiment on both sides of the Atlantic. There is no overwhelming need or demand for the technology in the workplace right now or for any other type of implantable device; but that doesn’t mean implantable technology won’t become socially accepted or shake up a few industries in the future.

 

The 5th Annual Enterprise Wearable Technology Summit 2018, the leading event for enterprise wearables, will take place October 9-10, 2018 at The Fairmont in Austin, TX. EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. For details, early confirmed speakers and preliminary agenda, please stay tuned to the conference website.


Augmented World Expo (AWE,) the world’s largest conference and expo dedicated to Augmented and Virtual Reality, is taking place May 30-June 1, 2018 in Santa Clara, CA. Now in its 9th year, AWE USA is the destination for CXOs, designers, developers, creative agencies, futurists, analysts, investors and top press to learn, inspire, partner and experience first-hand the most exciting industry of our times.

Photo credit: https://www.paymentssource.com/news/chip-and-skin-implantable-rfid-gives-payments-its-matrix-moment