Home on the VRange: Immersive Tech in Residential Real Estate

Today, the U.S. housing market is nearing all-time highs following a long recovery from the 2007-08 global financial crash, which was fueled (in part) by the collapse of the housing market itself. Despite this, the traditional Real Estate market is challenged by a number of contemporary trends. Already enduring digital disruption via websites like Zillow and StreetEasy, the residential real estate sector must adapt, adopting emerging technologies to disrupt itself from within.

CURRENT TRENDS & PAIN POINTS IN RESIDENTIAL REAL ESTATE

Urbanization

In addition to limited space and gentrification – major trends jacking up costs in urban neighborhoods – there is an unprecedented demand for ‘single-dweller’ housing in cities due to more and more young professionals choosing to postpone family life for professional and social pursuits. Startups like WeLive (WeWork) and Dwell offer innovative real estate models that address the anxieties of urban living and new socioeconomic realities. A young professional who would have scrambled to find a roommate on Craigslist (an early real estate disruptor) now seeks affordable, flexible co-living solutions like Ollie’s co-living microsuites and micro-living building in NYC that have a built-in social network and great amenities. The future of cities will be small, smart living spaces.

New Consumer

Whereas baby boomers and Gen Xers desired to settle down, millennials – impacted by high student debt and the high cost of urban living – are largely single dwellers, less inclined to marry and start families. And while older generations saw homeownership as a source of wealth, their younger counterparts are less likely or able to buy housing. Meanwhile in the suburbs outside major cities, there is a glut of McMansions built in the lead up to the 2007 housing bust but a shortage of modest ‘starter homes’ for young families. Millennials currently represent the largest market to buy and rent homes, with Gen Z soon to follow. As real estate customers, these younger generations expect on-demand information, flexibility, market and price transparency, and ease of transactions. They also value green living and perceive properties with high quality visual presentation as higher value. These digital natives are also increasingly willing to make significant purchasing and renting decisions online.

Informational Parity

In the past, high fees for traditional agent/broker services could be justified because consumers depended upon qualified real estate professionals for access to residential listings. Now, the digitally engaged consumer has a wide range of resources for market information, including websites like Zillow, Realtor.com and Trulia and other platforms that have made market analysis available to the public. The average buyer or renter today can perform sophisticated searches and compare listings – a service that was once the exclusive domain of realtors – all for free on his or her own time. Though agents no longer have an informational advantage, their role is not obsolete–their specialized assistance is desirable for negotiating and dealing with inspections, escrow, insurance, co-op boards, etc. With digital competitors firmly entrenched, traditional realtors need to focus on differentiating their services, capitalizing on the fact that although people are digital-first real estate transactions will always be emotionally-driven, human decisions.

CURRENT STATE OF TECHNOLOGY IN REAL ESTATE

Residential real estate has gone through several waves of digital disruption, including the rise of online portals that have come to dominate the real estate search. Online platforms have also helped streamline many purchasing, rental and leasing processes, with some companies now offering fully integrated, end-to-end solutions for buying and selling homes and even generating mortgages. Evidence of the rise of ‘Proptech’ or ‘REtech’ can be seen in newly created CIO positions at real estate firms, while the technological readiness of homes is becoming a key selling point for consumers desiring smart and connected, energy-saving home solutions.

Despite the rise of the Internet and the importance of a home’s digital listing, staging a property – making it attractive to visiting buyers to boost its perceived valuation – remains key to a listing agent’s success in marketing and selling a home. This may include purchasing furniture for an empty space, repainting and refinishing, and/or rearranging items in an existing space, which takes time and money. Though good, old-fashioned yard signs remain a hallmark marketing tool for listing agents, emerging technologies are steadily creeping into residential realty. Common real estate marketing practices like distributing expensive paper brochures, staging properties, and even the construction of model homes will have to be reconsidered as new technologies emerge, offering potentially cheaper and more effective alternatives.

POTENTIAL FOR AR/VR IN RESIDENTIAL REAL ESTATE

Real estate professionals are finding creative ways to incorporate advancing technologies. The ability to remotely interact with clients, for example, is reducing the need for physical office space and travel, which in turn reduces overhead while permitting wider outreach. Over the last decade, ExP Real Estate has grown into a billion dollar real estate brokerage in North America, all without housing their agents in offices. Instead, they’ve built a sprawling organization that meets for training and strategic planning only in the virtual world. ExP may be an outlier in using tech to eliminate the costs of office space, but it points to the powerful potential for emerging technologies to disrupt the real estate sector.

Robust digital strategies, including the effective application of augmented and virtual reality, will be key to realtors’ success in reaching clients with independent access to market intelligence. A real estate transaction is still a high-stress event; the financial stakes are high for both buyer and seller, but immersive technologies can help facilitate efficient communication among all parties and alleviate what is typically an emotionally-charged process. For smaller real estate organizations and independent brokers, understanding the potential of AR/VR will be just as critical as for larger firms if they are to keep pace with technology and compete.

APPLICATIONS FOR AR/VR IN REAL ESTATE

VR Tours

Today, the Internet is a person’s first stop in the search for housing, but it’s hard to make a listing stand out among hundreds or thousands of similar listings online. Listings with VR tours, however, can effectively showcase a property and help hasten a sale or rental without the need to go to dozens of open houses in the company of a realtor. The immersiveness of VR means users can freely explore a realistic rendering of a property from the comfort of home and make an informed offer. Homeowners anxious to close quickly and fetch the best price can have greater confidence in a listing agent who uses high-quality, interactive VR models to market their property.

Camera companies like Matterport and GeoCV make high-quality virtual mapping fast and accessible, producing virtual scale models of properties that can be toured wearing a VR headset or examined from an overhead ‘dollhouse’ view. Lower-quality VR models you can walk through can even be created from photos taken on a smartphone. Of course, for consumers who don’t own a VR headset, VR tours can be enabled for mobile or desktop and real estate agents are also equipping their offices with VR devices. For out-of-state or just very busy homebuyers unable to visit a property due to time or distance, VR allows them to visit and revisit a home from wherever, providing answers to the questions normally fielded by an agent on site. In this way, VR can accelerate real estate transactions.

Augmented Agent

An agent’s commission is a predetermined percentage that doesn’t account for the time it takes to close a scale, which means technological solutions that reduce routine informational queries and travel are worth exploring. In some cases, the agent hosting a property is there only to unlock the door and entertain browsing visitors who may not be serious buyers. Augmented and virtual reality are excellent technological stand-ins for a human agent seeking to maximize productivity.

Innovative rental companies like Tour24 take advantage of facial recognition technology to grant – via mobile app – prospective renters access to apartments without an agent or tenant present. A beacon-activated informational tour unfolds via smartphone as the potential renter moves through the property. Taken a step further, open houses might come with AR smart glasses used to scan QR codes and view heads-up commentary at various points of interest. In this way, an agent could accommodate a prospective client’s schedule, giving them secure access to the home, and customize the tour without having to personally attend. Even classic marketing practices like planting a realtor’s sign can be taken to the next level with AR: Compass Real Estate, for example, has rolled out beacon-enabled signs that flash at passersby.  Similar AR-enabled signs scanned via smartphone could provide property information and statistics accompanied by a prompt to contact the agent.

Virtual Model Homes and Virtual Staging

It’s challenging to describe and sell a property that hasn’t yet been built. In most cases, a homebuyer or renter is in the market to purchase a vision for a property, so how that vision is presented is key. AR/VR technologies are powerful tools for bringing a future property to life, enabling tours of properties still under construction and making it possible for potential buyers to visualize spaces that do not yet exist. When marketing a home in progress, the immersiveness and detailed accuracy of a virtual reality model can supplement or entirely replace the usual promotional pamphlets and 2D or physical scale models. Brochures might be AR-enabled, while mixed reality could enable effective on-site tours, helping visitors see the potential of an unfinished, undecorated property and come to a decision before seeing the finished product.

When looking for a home, you have to imagine what it would be like to live in an unfamiliar space. While a good agent is able to anticipate what the client is looking for in a property, much of the decision making process comes down to the initial impression of an open house. Realtors often hire staging companies to bring in furniture and decorate homes before going to market. These companies generally stick to neutral decor, aiming to appeal to the greatest number of interested buyers. A couple with four children, however, seeks very different features in a home than a young bachelor or older couple with grown children. But what if you could provide a personally compelling visual narrative of the same space to individuals with varying tastes and requirements? Of course, you cannot physically rearrange a staged home for every potential buyer but with AR/VR you can help onlookers transcend a property’s current physical state, which might push them to make an offer. Staging can become a personal experience offering an array of design configurations depending on the client.

Imaging solutions from virtual staging startups like RoOomy, which counts Sotheby’s among its clients, overlay furnishings and interior designs into virtual models of empty properties captured via Matterport’s technology. An imaginative agent could put in a virtual jungle-gym or swimming pool, a pool table, built-in bar, home office, etc., customizing the virtual presentation down to the most minute details to be most effective. There are multiple benefits to virtual staging, including money, time and resources saved on temporary furnishings and meetings at the property itself, the ability to stage multiple interior design schemes and the opportunity to cross-market the services of partner businesses like interior designers and furniture manufacturers who might share the development costs of the virtual staging.

Conclusion

Digital platforms have produced an expectation of ease and access that has disrupted most corners of the real estate industry. A trend towards vertical integration of these platforms threatens to further encroach on the markets of traditional realtors. Real estate professionals must evaluate how emerging technologies like AR/VR can help them compete and create an irreplaceable role for themselves.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and early confirmed speakers, to come on the conference website.

AR/VR Innovation at Nissan, Adidas, ADT and More

Emerging technologies are taking root across industries. Learn how a wide variety of enterprises are applying new technologies in this summary of the most recent use cases of AR/VR and wearables:

Fast and Secure Customer Service via AR

Customer support is a key consideration for companies purchasing expensive, mission-critical equipment. When an urgent repair is needed, inefficient customer support practices can unnecessarily prolong costly disruptions to operations. Swiss machinery manufacturer Bobst understands that continuous improvement of their customer service practices is important to guarantee the integrity of their products and earn customers’ loyalty; which is why the company recently deployed the Helpline Plus AR system. This was intended to boost Bobst’s capacity to respond to customer requests quickly and efficiently, and indeed the solution did improve the performance of Bobst’s help desk technicians.

Augmented reality (AR) gives Bobst’s technical experts the ability to remotely diagnose and remedy a customer’s problem from anywhere in the world. Heads-up AR headsets deliver a two-way video and audio connection over a secure WiFi connection for real-time, visual remote guidance. With the customer wearing an AR headset, a support center-based technician can inspect the machine in question and give easy-to-follow troubleshooting and repair advice and instructions. The ability to observe remotely and instantly prevents mistakes and confusion in issue resolution and limits the amount of downtime for the customer, generating savings for both vendor and customer and multiplying the value of Bobst’s well-trained techs. Already boasting a strong customer support system, Bobst now sees AR-enabled, see-what-I-see communication as a powerful tool for service support that merits a worldwide rollout.


Continual Innovation on the Assembly Line at Boeing

Building a plane is a massive project. Production efficiency is a top priority, and the scale and complexity of the plane manufacturing process amplifies the consequences of a tiny mistake. Boeing has teams that evaluate every minutiae of the production process for possible optimization. For example, the company is set for a company-wide deployment of a Bluetooth-enabled smart wrench that measures the torque applied to a nut. The introduction of self-driving work platforms on the assembly line will be a significant innovation to cut time lost on the assembly line, promising to improve monthly production of 787 Dreamliners from 12 to 14. That one piece of technology could produce such a boost in output is remarkable, but the impact it achieves is only possible in combination with other innovations that have been regularly introduced by Boeing. Workers on platforms can now work seamlessly without the interruption of using a forklift to move the scaffolding of a workstation, which saves time and reduces the risk of accidents. Many of Boeing assembly line workers wear industrial exoskeletons to greatly reduce the strain of repetitive movements, in addition to using connected tools like the ‘smart’ wrench and AR glasses for workflow support.

Boeing’s innovative solutions are created by multidisciplinary teams of Boeing engineers who operate in small ‘innovation cells’ within factories where they use virtual reality to test their ideas. A recent breakthrough in one cell led to the implementation of a 3D-printed, curved ruler that reduced the time needed to execute specialized inspection tasks within a plane’s cabin by over five hours. The greater precision achieved by leveraging emerging technologies to transform existing processes can also reduce the need for some inspections overall. Industry leaders like Boeing continue to astound with their almost continuous development of innovative and effective applications for emerging technologies on some of the most sophisticated production lines in the world.

Hear more about Boeing’s use of emerging tech from Christopher Reid, Brian Laughlin, and Connie Miller at EWTS 2019 this September in Dallas.


VR Helps Adidas Corporate Teams Find Their Stride

In today’s corporate world, departmental silos create gaps in communications, leaving key decision makers to operate with limited information. Visibility and accessibility across departments and disciplines is critical to effective communication and collaboration in an organization, a problem Adidas identified in its own process for bringing new shoes to market.

Adidas’ answer for getting teams on the same page to deliver a shoe from design stage to a retail environment? Virtual reality. The retailer uses software supplied by The Wild to model products, build virtual marketing campaigns, and showcase new shoe designs. Holding meetings wearing HTC VIVE VR headsets allows cross-departmental decision makers to better communicate ideas and demonstrate designs. VR makes inherently spatial design concepts clearer and provides greater transparency into a project overall, putting stakeholders with varying expertise coming from offices that usually have little contact with one another on the same page and reducing the back and forth that can stifle global collaboration efforts. Having VR models of new designs readily available for scrutiny means that flaws can be identified and remediated before a product enters the costly production phase, ultimately speeding up the delivery of the product to market. In addition, other areas of Adidas’ business can use the shared 3D library to visualize and iterate products and marketing strategies in virtual retail spaces based upon the company’s real stores.

Hear more about Adidas’ use of emerging tech from Brooks Clemens at EWTS 2019.


VR Marketing: ADT’s Alarming Simulation Gets in Customers’ Heads

Safe at home on your own? ADT’s latest marketing campaign, developed in collaboration with Harte Hanks, brings the danger right into your bedroom. For the campaign, ADT shipped makeshift VR headsets to select households. With these, consumers were able to view an immersive YouTube video simulation of a house fire and ADT’s coordinated response with the local fire department. The virtual experience drops you in the middle of a crisis in motion, simulating the disorientation of waking up in a dark smoky room as a fire rages within the home. ADT’s campaign proved accessible, educational and engaging, a powerful emotional trigger to build brand awareness.

Marketing is an excellent space for experimentation and innovation with AR/VR, and campaigns similar to ADT’s can be conducted on a wider scale and at a lower cost in the future once VR headsets become a common household item. Enterprise applications make practicality a priority, but in marketing the incentive is to creatively connect with consumers and make a strong impression by whatever means is most effective. Innovative marketing teams will continue to toy with VR to produce novel, visceral experiences that enable brands to connect with customers.


Haptics for Better Handling

New car designs usually begin with 2D paper models and when a design is selected to advance to production, a 3D clay model is created to get a sense of the design at scale and refine the model. Expensive, inflexible and labor-intensive, clay modeling has been a standard auto industry practice for more than half a century. Now, VR is becoming widely adopted in car design, enabling designers to review interior and exterior details of a 3D vehicle model and identify any necessary changes to be made to the CAD model before a physical prototype is created.

VR, however, can fall short compared to the interactivity of sculpting a clay model; which is why Nissan recently deployed HaptX’s VR gloves. Merging the experience of the virtual world with sensory reality, the gloves deliver haptic feedback to the wearer, creating the sensation of physically shaping a car model with one’s hands. Designers wearing the gloves can feel the contours of the vehicle surface, manipulate console buttons and dials, and even grip the virtual steering wheel and drive the car. Though HaptX’s tech is currently limited (ex. you cannot distinguish textures or feel the subtle actions of gears and switches), Nissan’s use of it marks an important step towards more practical applications of VR.


Compressing the Sales Process

Swedish machinery manufacturer Atlas Copco’s AIRNET line is a range of high-quality piping and compressor equipment sold to provide complete integrated solutions for compressed air infrastructure. Atlas’ global distribution sales team markets the company’s integrated compressed air systems using components from the range of AIRNET products; but selling such a complex system can be slow and ineffective if the client cannot clearly visualize the functional layout of the system or its easy installment, operation and maintenance.

In order to improve the overall sales process and experience, Atlas Copco adopted Eon Reality’s 3D modeling and VR technology solutions. Atlas’ salespeople have been given access to a full virtual range of AIRNET SKUs to present clients with tailored compressed air infrastructure solutions. Using Eon’s tools, salespeople can create and adjust plans according to a client’s wishes without any particular technical expertise. The ability to demonstrate and swap AIRNET components in a virtual model eliminates the need to carry samples (there are over 1,000 AIRNET SKUs!); and complete quotes can be quickly calculated accompanied by a functional simulation of a system and the bill of materials adjusted with each design iteration. Installers and technicians also get access to cloud-based VR installation guidance. Using VR, Atlas Copco’s sales team is able to shorten the sales cycle and better engage clients while assuring superior VR-enhanced follow-up support.


VR for Public Outreach: Clearing the Air About Petrochemical Operations

The towering smokestacks of a chemical plant or refinery can be an ominous sight. Public misconceptions and mistrust pose a serious challenge to companies whose operations often only reach the public consciousness via news of industrial accidents and disasters. This has resulted in an unsympathetic industry image – one of pollution as opposed to cutting-edge tech and critical production – which, in turn, affects recruitment of new generations of talent.

Industry association American Fuel and Petrochemical Manufacturers (AFPM) has pushed companies like Marathon Petroleum and Ineos to improve public relations and boost recruiting efforts by using VR to ‘open’ their plant operations to the general public. A VR tour experience of Marathon’s Galvestone Bay refinery and one of Ineos’ La Porte chemical plant, made for Oculus as well as the more accessible (and cheaper) smartphone-enabled Google Cardboard, aim at demystifying the industry for consumers. Viewers virtually meet Marathan and Ineos employees, the idea being to dispel doubts about oil and gas operations and inspire students to pursue careers in the field. VR permits a higher level of engagement with and outreach to the public than previously possible for the likes of Marathon and Ineos.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and confirmed speakers, available on the conference website.

 

Recreating Disasters and Training Claims Adjusters with AR/VR

Warnings and other use cases of AR/VR in Insurance:

The UK-based insurer Allianz used augmented reality to generate customer awareness around the possibility of home accidents. The company built a model house that had an accompanying augmented reality (AR) app called “Haunted House.” Looking into the house through AR-enabled mobile devices, customers could view a variety of virtual accidents and dangers, including a toaster that starts to smoke and sparkle, a sink flood that breaks the bathroom floor, and a cracked aquarium. In a similar use case, Australian-based NRMA Insurance introduced a virtual reality (VR) car crash simulation that gave Oculus wearers the opportunity to feel what it’s like in a crash situation. The user (wearing a VR headset) experienced the accident sitting inside a real car that moved through a hydraulic system in coordination with the action in the virtual world. The goal of this campaign? To promote safe and careful driving.

Customer Service:

Betting on a future where virtual customer service is the norm, PNB MetLife recently launched “conVRse” – an immersive and personalized customer service simulation – across 10 cities in India. Wearing VR headsets, policyholders at a number of the insurer’s branches in India can interact with Khushi, a virtual customer service representative and life insurance expert. MetLife says this is the first time VR is being used in insurance and hopes the on-demand VR support will be a major differentiator that reaches Millennials and other digital savvy consumers.

Explaining Insurance Plans:

The Group Retirement Savings (GRS) division of Canadian insurer Desjardins Insurance has been developing educational tools for some time now in a variety of media. The newest option for learning about Desjardins’ retirement plans? Augmented reality. GRS created a mobile AR app starring a child character named Penny. By downloading the app your way Desjardins and printing out a “Penny Dollar,” consumers can point their phones and activate videos, each one about a different retirement planning topic. AR is just the latest step in Desjardins’ effort to make the process of choosing a convenient retirement plan less confusing and stressful.

Advertising:

Liverpool Victoria (UK) partnered with Blippar to make AR newspaper flyers that, when viewed through users’ phones and the Blippar mobile app, come alive. What appears is a 3D model of a house that you can explore by tilting your device, discovering in the process all sorts of objects that can be insured within (ex. car, pet, etc.) Users can even order insurance right from the app.

Damage Estimation:

Live video collaboration tool Symbility Video Connect allows consumers themselves to participate in the insurance claim process by helping adjusters collect information for damage estimation at the first notice of loss. Via the policyholder’s smartphone camera, the insurance adjuster can remotely inspect the damaged property, collecting all necessary data to assess the claim object and process the customer’s claim faster. Though the solution currently works with the customer’s smartphone; in the future insurers might offer something similar complete with a pair of smart glasses upon purchasing an insurance plan, allowing their claims adjusters to cover a wide geographic location.

In a similar vein, Donan (forensic investigation firm) and Matterport (3D scanning camera company) partnered to enable fire investigators to create highly detailed photogrammetry scans turned into interactive 3D models that can be reviewed from anywhere in the world. Using a VR headset, PC or mobile app, investigators can virtually walk through the fire scene in order to more easily assess damages and write an estimate for quicker claim settlement; they can also include the scans in official documentation for structural fire losses. Moreover, the ability to fully document a fire scene could be a gamechanger for litigation; a lawyer in an arson case, for example, could transport the jury to the scene of the fire with VR headsets, making the evidence come alive.

Risk Assessment:

Zurich Insurance’s risk engineers and field inspectors often need their hands free in order to climb ladders and work in tight spaces; it can be really inefficient and inconvenient for these field workers to access necessary data like checklists or site plans on a handheld mobile device, so the Swiss insurance company turned to AR glasses. Wearing smart glasses, engineers and inspectors can view multiple screens of information right before their eyes and consult with other experts (see-what-I-see communication) from the field.

Employee Training:

In 2017, Farmers Insurance announced it had invested significantly in virtual reality for training employees. At the time, roughly 50 new hires had gone through the pilot program, but Farmers had yet to do any comparison studies. Before VR, the home, auto and life insurance company would send employees to a two-story house in L.A., but as the trainers (teachers) damaged the house in the same way with every class, trainees weren’t exposed to enough situations to really learn the trade. New hires wearing VR headsets, however, could walk through six different floor plans and experience 500 different damage scenarios for thousands of training simulations. The virtual training sessions could also be recorded for trainees to review later. For a novice claims adjuster, the more training scenarios, the more comfortable it is to enter a real customer’s home. Farmers reported positive early feedback, noting potential savings of up to $300,000 a year from not having to pay for new hires’ travel to traditional training facilities.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and confirmed speakers, available on the conference website.

Digging for Digital Transformation Using AR/VR & Wearables: The Sustainable Future of Mining

Despite advances in technology, mining operations today are fundamentally the same as they were half a century ago. Faced with increasing demand, diminished ore grades, less accessible deposits, and public pressure to be more environmentally and socially responsible, mining companies must develop new techniques by adopting emerging technologies to evolve their industry.


Trends and Pain Points in Mining

Bad Reputation

Mining has a less than stellar reputation when it comes to social and environmental impact. Despite technical advances and modern equipment, the mining industry as a whole has increased water consumption and is trailed by a legacy of poorly rehabilitated mines that have left behind chronic environmental problems like acid drainage. Mining companies can improve their image and build trust if they increase supply chain transparency and implement environmentally-sound practices that can stand up to regulatory pressure and the scrutiny of an increasingly aware consumer market. Firms must push innovation and R&D to find solutions (advancing techniques like biomining) to reduce their environmental footprint and mitigate the risk of large-scale incidents.

Material Resources

As the global population rises, so too does demand for minerals and metals. The depletion of near surface resources has pushed mining companies to look for lower-grade ores at much greater depths and to consider mine development in less politically stable areas. Extensive investment is required prior to mineral extraction from difficult-to-access deposits, and though there are innovative mining methods like block caving, high profitability must be assured before capital-intensive projects can proceed for the industry is highly risk-averse. Facing tight profit margins and buffeted by social and regulatory pressure, mining companies that streamline operations and develop new methods of mineral and metal extraction and processing will be able to meet demand and control costs.

Siloed Operations

The operations of a typical mining company are geographically dispersed. Valuable information is lost due to these operational silos, obstructing a company’s ability to coordinate and collaborate. Individual mines often operate with a high degree of independence and varied corporate structures limit centralized management, making it difficult to introduce disruptive technologies across an organization.

Safety & Labor Scarcity

Mines are busy, noisy and dangerous working environments. Workplace injuries are underreported globally and deaths not uncommon. Entering a mine can expose a miner to dust, gases, explosions, high heat, flooding, falling rocks, and cave-ins. Mines with the highest safety standards are not immune to these risks, but with proper precautions and investment in safety solutions and training, safety can be significantly improved. Compounding issues, the mining industry is suffering from a labor shortage. A culture of innovation, a renewed focus on safety, and the implementation of new technologies is key to recruitment and training of new workers.


Current State of Mining Technology

The mining industry is one of the least digitized in the world, with leadership that up until recent years hesitated to invest in any tech if a quantifiable, short-term return could not be guaranteed. Today, proven technologies that have been successfully implemented in other industries do not present the same level of risk. Drones and robots are being successfully introduced to mining operations to eliminate dangerous and monotonous jobs, and companies are investing in mine connectivity like leaky feeders or LoRA technologies to extend a signal deep underground. Some forward-thinking companies like Rio Tinto have begun to pursue digital transformation on a grand scale. Part of Rio Tinto’s ‘Mine of the Future’ program, for example, involves a massive investment to automate a mine’s supply chain from pit to port including an extensive rail network.


Potential for AR/VR and Wearables

In addition to drones and robots, technologies like augmented and virtual reality and wearable devices will optimize the productivity and safety of the mining workforce. Immersive and wearable technologies, whether worn within the mine or in a control center a continent away, can help users interact with remote colleagues and visualize and analyze data generated from sensors deep below the surface of the earth. Wearables can enhance real-time visibility into a mine’s operations, allowing for more effective and informed decision making; while simulating mine environments and interacting with asset data in AR/VR have a wide range of training and other applications.

Applications of Immersive and Wearable Tech in Mining

Exploration of New Mine Sites

Today, drones and UAVs are routinely used to study an area’s geology, producing 3D maps for general inspection. Drones themselves can even be operated via smart glasses (ex. Epson). The data gathered above and below ground forms the basis for digital models in virtual or mixed reality that can be used to perform safety inspections and maintenance assessments, for planning construction and environmental mitigation efforts, and to monitor inventory.

Before drones, workers typically performed surveying tasks by mounting high scaffolds, exposing themselves to great risk. Moreover, the information wasn’t always accurate. Drone mapping is cheaper, faster and more precise; and the information gathered – when put into AR/VR – allows for intuitive visualization and comprehension of the results of exploration, development drilling, geological models, and topography studies at scale. AR/VR also make for better remote collaboration and understanding among stakeholders such as surveyors, mining engineers and equipment operators, which speeds up decision making.

Few discoveries make it beyond feasibility studies to become an actual mining site, so it’s important to keep costs down and build an accurate model in a short period of time to get a comprehensive picture of the potential mine. A lot of time and money can be saved by not having to visit a mine site on foot, which eliminates risks associated with traversing difficult terrain in addition to travel expenses.

Development and Planning

AR/VR is a powerful visualization tool, making data easily accessible, engaging and meaningful to potential investors and other stakeholders. High-fidelity imaging of geological information, mine plans, geolocated borehole data, etc. can be modeled in AR/VR for easy, interactive analysis. Immersive simulations can also be used to show local community members the footprint of a planned mine throughout its development and operation, and how mine closure and post-mine closure activities will affect the area.

AR/VR, increasingly used by construction contractors to plan mines and discover design flaws before production begins, produces interactive 3D models that can be used throughout the life of a mine and integrated with an operation’s other digital assets for maintenance, training, etc. A full digital twin of a mine – uniting all mine assets via spatial data and other real-time information – allows for live monitoring and management of its vehicles, ore deposits, human workers, and machines; however, the use of digital twin technology requires a high level of digitization of the entire mining operation.

Safety

Future advances in automation may largely remove humans from the dangers of the most hazardous mines, but today’s miners are still at risk and require the most effective tools available for communication, health, and safety. Workers entering a mine today can be equipped with a range of wearable sensors and sensor-embedded protective equipment (PPE) that track their health and environment. Any device brought into a mine must be highly durable and able to perform in hazardous, wet environments as per industry regulations. Wearables might alert workers via sound, light or vibration to issues such as exposure to dangerous gases, seismic anomalies, and proximity to moving or malfunctioning equipment or vehicles. Currently in use are sensor-enabled safety helmets (ex. Jannetec), vests (Lightflex), shirts (Mitsufuji) and wristbands (Fatigue Science). These keep workers connected and alert to danger within and without their bodies, and in most cases can communicate with equipment and vehicles on site.

Wearable devices that track biometric information embedded with RFID technology can track a worker’s location, even detect falls and physical distress, which is key for lone workers. Sensors can track assets and people in real time, generating data that can be later analyzed to improve operations and the mine site itself. AR smart glasses (with appropriate safety ratings, of course) present another means of notifying workers about safety threats and even providing heads-up, hands-free safety protocols and directions.

There are now early-warning drowsiness detection systems like Optalert and other wearables designed to monitor a mining vehicle operator’s alertness in order to reduce fatigue-related incidents. AR glasses can eliminate an operator’s blind spots and minimize peripheral distractions like the complicated control panels inside the vehicle. Should an accident occur, someone wearing AR glasses could livestream the situation to an expert or supervisor, helping to treat the fallen worker before first responders arrive. AR/VR can also be used to train workers for hazardous environments, allowing them to gain experience without assuming the risk of practicing in a live environment.

Operations

Proper servicing and maintenance of mining equipment and vehicles can help avoid potentially catastrophic mechanical breakdowns in a mine. Of course, this is difficult with a shortage of highly-trained workers, but new fleets of connected mining machinery provide real-time diagnostic data allowing for predictive maintenance. A worker wearing AR glasses, even without a clear understanding of standard operating procedures or familiarity with the piece of equipment in question, can perform maintenance and repair with the assistance of a remote expert or vendor, remaining heads-up and hands-free the whole time. This reduces reliance on key personnel without impairing equipment output.

Mine suppliers like Caterpillar and Atlas Copco now market their machines and vehicles with VR training simulations and use the same tech to provide AR assistance for maintenance and repair. Miners can practice tasks in VR, tasks like performing an inspection on a Haulpak vehicle in a Mobile Maintenance Repair Workshop or performing a 3D scan of a physical pump for visualization; and then perform the same tasks in real life with prompts in a pair of smart glasses. Better maintenance, repair and overhaul practices with the aid of AR/VR will result in less equipment downtime, higher productivity, lower maintenance costs and, most importantly, improved safety for human operators.

Training

Virtual reality is an incredibly effective and efficient training tool especially for industrial workers because it allows trainees to gain experience without visiting a mine in person. Restrictive permit policies at some mines mean that employees can’t enter the mine without training. VR is the closest thing to doing the job in real life, and research from Stanford University and other institutions has found that learners recall more when using virtual teaching methods than with traditional methods. When it comes to high-risk tasks and hazard awareness, there’s no way to simulate a realistic mine rescue situation other than in VR. In VR, the user can be burned, fall from a height or even be electrocuted without real consequences. The medium also offers measurable data to assess a user’s performance. For instance, in a virtual inspection of a mine, the trainer can observe not only the user’s movements but also her gaze to see what draws her attention first.


Conclusion

The ability to walk, climb and interact in an environment using AR/VR will make for easier discovery and better planning of mines, faster innovation and greater productivity, increased safety and higher quality, all of which can improve industry recruitment. The changing nature of mining, including increasing digitization and automation, should draw a new generation of workers—tech-savvy individuals traditionally attracted to more high-profile industries as well as talent that hadn’t considered mining because they didn’t want to work underground or in remote areas. Pushing into frontier mining areas and planning new mines with new extraction and processing techniques (with a lighter human touch) will further the incorporation of new technologies; allowing miners to face less challenging working conditions and making mining as a whole a more sophisticated sector. Who knows? Tech companies that rely on mined materials to build their products might even begin their own mining operations in the future.

 

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and confirmed speakers, available on the conference website.

 

 

 

In-flight VR, Smart Bands at the Resort, and AR Glasses for Tourists

Today, “every business is a tech business” and in every industry consumers’ digital customer service expectations are growing. A decade after the U.S. travel and hospitality industry emerged from the 2008 recession; industry players, including airlines, airports, cruises, hotels, and other travel brands, are feeling the heat to compete and earn the loyalty of a new customer base via emerging technologies.

Trends and Pain Points in Travel and Hospitality   

Shift in Target Demographics

Though Gen Y overtook Baby Boomers as America’s largest living generation in 2016, the demographic with the most purchasing power around the world today is millennials, and they don’t vacation like their parents. Travel brands need to both court and cater to millennials, who prefer to spend their money on experiences (like immersing themselves in another culture) over material objects and are more spontaneous and comfortable with tech than previous generations.

Competition

First it was online travel agents like Expedia and Priceline; then came Airbnb and VRBO—OTAs and the sharing economy have rocked the travel industry, altering distribution channels, taking business away from traditional industry players, and forcing airlines and hoteliers to compete online to win back customers. According to ADI, approximately 60% of all travel reservations are now made online despite Loyalty Rewards Programs for travelers who book directly through the airline or hotel. Another consequence of OTAs and millennials’ spontaneity is that the window between booking a ticket and boarding a flight is getting smaller, putting strain on travel and hospitality operations.

Heightened Consumer Expectations

We live in an experience economy, where it’s becoming critical for businesses to have customized offerings and personalized services. Millennials want to do something new and memorable on each trip but they also want personalized experiences and don’t mind sharing their data to receive customized travel recommendations. In a time when a single data breach can destroy a brand, travel companies must walk a fine line between capturing enough data to personalize services and respecting guests’ privacy and security. In addition to personalization, today’s consumers consider sustainability and wellness in their travel choices, expecting hotels to “go green” and have state-of-the-art fitness centers, healthy food and beverage options, even yoga classes.

Labor Gap

Within the leisure and hospitality sector, there are an estimated one million job openings in the U.S. alone. As companies struggle to attract and retain the right talent to fill the experience void, reduced immigration is impacting the supply of transient and hourly workers that have come to make up a large portion of the hospitality workforce. Moreover, recruitment for new job roles needed to incorporate the latest tech into the travel experience is proving difficult and high turnover is discouraging investment in skills development for new and existing employees.

A Testing Ground for New Tech

Historically, the travel industry has been quick to adopt new tech: In the late 1940s, before most consumers had a television set at home, hotels began to install TVs in the guest rooms. Travel companies were also among the first to leverage the World Wide Web to increase sales, with the first hotel websites launching in 1994; and one of the very first use cases for Google Glass came from Virgin Airlines in 2014. But the challenges above call for real implementations and dramatic digital transformation.

Applications for Immersive and Wearable Tech in Hospitality

Virtual booking

“Try-before-you-buy” shopping apps have become an early hit for augmented and virtual reality, especially for big-ticket items like furniture and real estate. Travel, too, is expensive and consumers need a lot of information before deciding to book. Virtual reality presents the ideal medium for selling an experience, giving travelers insight that no amount of text on a website or any number of customer reviews can match by allowing them to essentially preview their trip – from their seat on the plane to the view from their hotel and local attractions – before committing.

In 2017, Amadeus unveiled the first VR booking experience in which users shop for travel in a virtual world. Users can search for flights, review cabins, compare hotel prices, and book rooms all through a VR headset. And while you might think that as VR gets more and more immersive it will replace travel altogether, current research has found that visiting a destination in VR actually makes one more inclined to visit the real place. If VR hits critical mass at $199 per headset over the next few years, VR travel planning and booking may very well be one of the killer apps for the technology.

Marketing

Hospitality brands spend a lot on marketing. AR/VR is becoming a major differentiator in this area, as hotels themselves adopt the technology as a selling tool. Hundreds of hotels now offer virtual tours. For instance, Atlantis Dubai offers a virtual tour on its website so guests can explore the hotel’s luxury rooms and on-site experiences like swimming with dolphins from the comfort of home. Once on the website, consumers are more likely to book directly through the hotel, as well. In 2017, Marriot launched a VR tour of its meeting rooms, allowing corporate clients and event planners to virtually walk through its function areas from anywhere. During an on-site tour, one might even digitally augment the space to get a more realistic feel for a venue’s suitability. Palladium also uses VR, not to inform prospective guests but instead to educate travel agents about its properties. Palladium salespeople go around giving agents VR headset-enabled virtual tours so they can better sell the chain’s hotels to customers. Some hotels even offer on-site AR/VR experiences, usually smartphone-enabled, that both entertain guests and enlist them in the brand’s marketing efforts via social media sharing.   

Operations

There are a lot of moving parts in the travel and hospitality industry, requiring staff to be in constant communication in order to provide seamless customer service around the clock. Management and staff have traditionally kept in contact via two-way radios, a method prone to lost connections and poor audio quality. Looking for a better way to communicate, Viceroy Hotels turned to wearables: At the Viceroy L’Ermitage in Beverly Hills, hotel staff piloted Samsung Gear S3 smartwatches to manage guest requests and resolve incidents more efficiently than they could with a walkie-talkie or phone. The pilot showed response times going down from 3-4 minutes to just 60 seconds; the solution was also less intrusive, sending silent vibration alerts to the staff members best placed to serve a guest’s need. Houston’s Hotel Alessandra also uses Samsung smartwatches for fast and discrete communication among employees, improving the experience for both guests and staff.

Entertainment & Tour Guide

VR headsets are popping up in airport lounges, on flights, and in hotel rooms alongside other amenities. Qantas, for one, has experimented with providing virtual experiences and games on high-quality VR headsets to first-class passengers; and in 2015, Marriott launched its “VRoom Service,” whereby guests can order a Samsung Gear VR headset delivered to their room—a step up from streaming services and on-demand movies. The headsets come preloaded with “virtual postcards” that not only entertain but also sell users on new destinations (where they can stay in a Marriott hotel, of course).

Others are using mobile AR apps and VR headsets for guest engagement. For example, Holiday Inn created an AR app allowing guests to view virtual celebrities in the hotel through their smartphones; while at London hotel One Aldwych, a whiskey cocktail called The Origin comes with a VR headset showing how and where the whiskey was made—a truly unique cultural experience made possible by VR. Hotels and travel brands are also developing custom AR tour guide apps, like a mobile concierge that provides real-time, heads-up navigation and personalized recommendations for loyalty program members, and enhances sightseeing with digital information overlaid on the landmark itself. The Hub Hotel from Premier Inn in the UK does this with special maps on the walls of every room, which, when viewed through a smartphone, display information about local places of interest—an unexpected, value-added feature for the hotels’ guests.

Airlines and hotels can also adopt augmented reality smart glasses to enable flight attendants and hotel staff to personalize customer service, using facial recognition to greet guests by name and tapping into a customer resource management system, social media and other data sources to bring up information relevant to individual passengers.

Convenience

AR certainly provides convenience by supporting guests and passengers in their native language, showing them directions, etc. Below the neck, IoT (Internet of Things) wearables provide convenience, as well. Case in point: Disney’s MagicBand, one of the earliest and most successful (bespoke) wearable devices in the travel sector, widely used today in Disney theme parks as an all-purpose means of payment, admission and keyless entry for resort guests. In 2017, Carnival announced its Ocean Medallion, a small, waterproof device that can be worn or carried, enabling cruisegoers to embark the ship, enter their staterooms, shop, and make reservations. The Medallion works with Carnival’s Ocean Compass app, which displays personalized recommendations for every passenger with the help of 7,000 sensors installed throughout the ship. Likewise, Meliá Hotels has begun offering waterproof, Bluetooth-enabled smart wristbands by Oracle, which, in addition to serving as a payment method on the Spanish resort of Megaluf, also work at nearby participating merchants like Starbucks.

Training 

Compared to traditional teaching methods, immersive simulations have proven more effective for quick learning and retention of knowledge, which is why major corporations around the world are using AR/VR to train new employees and retrain core staff for new roles. In travel and hospitality, immersive tech can help prepare employees for exceptional scenarios that are hard (or undesirable) to train for in real life like diffusing an angry guest. Need to walk a team through new green housekeeping measures or alterations to the menu? Use VR.

In 2016, Best Western partnered with Mursion to develop a series of VR simulations for front-desk staff to practice interpersonal skills. According to the hotelier, the 60-minute virtual guest interaction training sessions contributed to a noticeable boost in guest satisfaction. Recently, luxury cruise line Seabourn worked with Pixvana to create a VR training solution to help wait staff quickly memorize the dining room’s 105 tables and 12 serving stations. Hilton has used VR with its corporate staff to build appreciation and empathy for the chain’s employees, having higher-ups virtually take part in routine operational tasks like cleaning a guest room and arranging a room service tray.

Conclusion

The convenience of wearables is appealing not just to millennials but to most modern consumers, as are enhanced experiences of physical spaces enabled by augmented and virtual reality. VR will surely become a popular way of shopping for hotels and AR a natural addition to sightseeing and other aspects of the travel experience (on-demand, in-context information). Early adopters in the travel industry are poised to define the competition, providing experiences to guests they cannot get at home, attracting new workers with brand new tech for training and carrying out daily tasks, empowering staff to provide superior, personalized customer service, and easily preparing employees for the roll out of new sustainability and wellness features.

*Learn more about emerging tech in the Travel & Hospitality industry at EWTS 2019: Hear from Blaire Bhojwani of Hilton Hotels, Andy Kozak of JetBlue, Jayson Maxwell of Six Flags, and more.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and confirmed speakers, available on the conference website.

The Price of Drugs: Exploring New Realities in Pharma

Drug discovery, development, testing, approval, manufacturing, marketing, sales, and distribution—the pharma industry is defined by a number of processes – some years-long and all highly sensitive – that are coming under increasing strain due to rising demand, changing regulations, pricing pressures, the rise of personalized medicine, and the explosion of available data from new wearable devices. In response, large, mainline biotech firms like Pfizer and Novartis, smaller CMOs (contract manufacturing organizations), equipment manufacturers and others involved in the highly fragmented pharmaceutical sector are looking to emerging technologies to improve efficiency, speed up research and production, widen margins, and guarantee quality and safety.

What is takes to develop a drug

In the past, drugs were discovered either by isolating the active ingredient from a traditional remedy or completely randomly; today, molecular biology or biochemistry is used to manipulate the metabolic pathways related to a disease, with major pharma companies increasingly outsourcing this research to universities and biotech companies. Once a compound (potential drug) is identified, it costs an estimated $1.3 billion to develop it and over a decade to gain approval and begin commercial production. In most nations, only a small fraction of potential drugs is ultimately approved by government authorities, and only a fraction of those ever provide a return on investment.

FDA approval comes only after heavy investment in pre-clinical studies and human trials, which help to determine correct formulation and dosing, as well as safety and effectiveness. Drugs can fail part-way through development and capital can dry up, forcing a company to discontinue testing. While new patented drugs are potentially the most profitable, the time to market is very long. Needless to say, the pharmaceutical business is high-risk, low reward.

Drug production

Pharma is one of the most wasteful industries, losing billions each year in manufacturing costs alone. Production has been plagued by inefficient communication, inaccurate reporting, and poor efficiency and reliability. This is as much the result of the fragmented, globalized, and extremely risk-averse nature of the pharmaceutical industry as the increasing complexity of drugs, stringent standards, and lack of financial incentive. Moreover, the equipment itself is difficult to operate, requiring trained specialists to use and maintain, and many engineers still use long, paper-based procedures. The combination of complex equipment and high stakes make pharma ripe for digital disruption.

Disruptive trends in Pharma in 2019

 As in other industries, data is becoming one of the most valuable assets for pharma companies, but data has to be analyzed and delivered to real people in order to drive smarter, faster (real-time) decision making. The potential is great: Applying machine learning to aggregate data sets from all stages of drug production and distribution, including such sources as new wearable devices, smart machines, track-and-trace initiatives, etc. can help pharmaceutical firms meet regulatory scrutiny, reduce human errors, speed up time to market for new drugs, and even better market products. Though pharma is significantly behind other advanced manufacturing sectors in adopting new tech, a number of trends coming to the fore in 2019 are expected to force the industry’s hand.

Strained manufacturing operations

Biologics are large molecule drugs made from living organisms; used to treat diseases like cancer and autoimmune disorders; produced through complex, carefully monitored manufacturing processes (1,000+ steps); and given through injection or infusion (vaccines, gene therapy, etc.). Though the large majority of drugs on the market are small molecules, biologics are on the rise, requiring expensive manufacturing infrastructure. Drug manufacturing has also been impacted by serialization: Introduced to help combat counterfeit drugs, serialization – whereby each saleable unit of a prescription product is given a unique serial number – slows down packaging and requires manufacturers to update their equipment, software and training. On the other hand, serialization generates loads of data that could provide efficiency-boosting insights via advanced analytics.

Rising demands

Tight government price controls, supply disruptions created by natural disasters, job cuts and other factors have created a shortage of generic drugs and medical staples. There is also great demand for oncological and immune-suppressant drugs and therapies driving increased use of HPAPIs (high potency active pharmaceutical ingredients) in drug manufacturing. As the pipeline of major blockbuster drugs winds down, HPAPIs are becoming a more attractive market; and as a result, more pharma manufacturers are investing in upgrading existing facilities to meet their specialized containment requirements and protect employees. Pharma is becoming a tougher market in general, with politicians, health insurers and consumers calling for pharma companies to reduce exorbitant drug prices while also maintaining standards and production efficiency—a tall order.

Immersive wearable tech in pharma

If you can’t raise prices, then you need to cut costs elsewhere. For pharma companies, this means spending less time and money on R&D and going to market faster. As the drug pipeline shifts to meet demand for personalized medicine (targeted biologics), pharma companies are feeling the pressure to revamp their product lines, factories, and processes to become more streamlined and cost-efficient.

AR/VR

For drug discovery

R&D spending in pharma has been rising parallel to the growing complexity of drug development, leading forward-thinking companies to explore AR/VR as a tool for discovering new drugs faster (and therefore cheaper). If VR-trained surgeons are able to complete procedures faster than non-VR trained surgeons, it follows that pharma researchers would innovate faster with VR than they currently can using computer graphics (CAD) and static models of molecules made of wooden balls and wires. Indeed, whether in the classroom or the lab, virtual reality is proving effective for visualizing and conveying difficult concepts while augmented reality can put interactive complex molecules into the scientist’s real-world environment.

Wearing a VR headset, drug developers can step inside a molecule or compound to see how it responds to different stimuli and quickly simulate complex drug interactions. Wearing AR smart glasses or a mixed reality headset, researchers can manipulate molecules and chemical structures in space – folding, knotting, and changing the shape of the molecules right before their eyes – and tweak a drug’s chemical makeup so it bonds to the protein in question, altering its function to the desired effect. AR/VR decreases the number of errors in the years-long process of drug discovery, which is essentially one of trial and error, by helping “drug hunters” iterate and improve (get to the right shape) faster. As a result, companies are able to develop better drugs with fewer side effects. Immersive tech can also improve collaboration among researchers around the world, eliminating barriers like distance and language by allowing two or more scientists to walk through the same chemical structure together from separate locations.

For manufacturing

Training and education

In other manufacturing sectors, augmented and virtual reality are allowing new workers to learn on the job without making mistakes as well as safely practice operating equipment before using a real machine. Likewise, AR/VR can significantly improve training outcomes for pharmaceutical workers. In addition to “practice runs” on complex pharmaceutical manufacturing equipment even before entering a facility; a process engineer wearing safety smart glasses can learn on the job while still meeting high levels of control and quality by accessing step-by-step instructions and other multimedia support for troubleshooting and repairing a machine right in her field of view or connecting via livestream to a remote expert for guidance and support. Operators and scientists can also use VR to learn the proper principles of aseptic technique and the proper procedures for different laboratory and production environments (ex. the specialized containment and personal protection requirements for HPAPIs). Beyond production, AR/VR can help explain new treatments to doctors and patients, and train nurses to administer a new drug or therapy.

Heads-up, hands-free information and documentation

 In manufacturing in general, data from connected machines is unlocking the ability to perform predictive maintenance, saving manufacturers millions of dollars in downtime; so a systems engineer wearing smart glasses in a pharmaceutical plant could receive real-time, heads-up and hands-free notifications about, say, a location that will soon need replenishment or an instrument that’s predicted to fail, allowing him to catch and address issues in advance, thereby improving efficiency, speeding up production, and lowering costs. Anywhere along the production cycle, digital information can be beamed in this way to augment an engineer’s view and intuitively show him or her what to do. For instance, an engineer could use smart glasses to scan the QR code on a piece of equipment, automatically bringing up work instructions or an interactive diagram tailored to that machine. Engineers could access batch records heads-up and hands-free and record values and videos via voice command, never needing to take their hands or attention away from a process. This is also an easy and effective method for audit readiness.

Remote support

All of this instant, hands-free access to information – presented heads-up and in context – is designed to enable users to work faster and more accurately, but it’s not just the challenges of visualizing complex drugs and the use of incorrect, out-of-date paper procedures, manuals, and documentation that slow down time to market; the need to fly in specialists to a pharmaceutical facility when something goes wrong is another contributor to what has become a years-long, complicated, error-prone and unrewarding process. Immediate ROI and time saved can be had from adopting AR glasses for remote support, especially when users need vendor advice. With augmented reality software, the expert can even draw on the user’s display to highlight specific buttons or connections and drop 3D arrows into her real-world environment in the facility.

Conclusion

The possibilities for AR/VR in the pharmaceutical sector are great and desperately needed. Pharma companies should be taking cues from other advanced manufacturing sectors, which are already seeing results in training, efficiency, quality insurance, and safety through the use of AR glasses and VR headsets. Of course, pharma is a sensitive industry, and new devices open up new opportunities for hackers to gain patient data and secret drug research. Any investments in emerging technologies must be accompanied by investments in cybersecurity.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and early confirmed speakers, to come on the conference website.

 

VR: Getting People to Take Safety Training Seriously, Retail Merchandising, and More

Virtual reality is making inroads in the retail industry, at the same time as more and more companies are realizing the powerful potential of VR for training. Here are some of the most recent use cases of VR in enterprise, all of which, when it comes down to it, are customer-facing applications of the technology. The following is evidence of digital disruption ramping up beyond work instructions and collaborative design, to directly impact the products and services that consumers experience everyday:


ADT

In a recent mailer campaign to convey the importance of professional alarm monitoring services, ADT sent out Google Cardboard-like VR headsets that put recipients into a simulated life-threatening situation. Noting a lack of awareness among homeowners around what actually happens during a fire, ADT worked with Harte Hanks to create a VR experience accessible on YouTube that would drive home the potential side effects of carbon monoxide, the physical obstacles that can prevent you from escaping, and other elements of a house fire.

Placing a phone in the viewer sent by ADT, you find yourself in a bedroom filled with smoke. You’re immersed in a mother’s fear and disorientation as she’s awoken by a call from ADT and goes to find her daughter, who refuses to leave without her dog. When the two go downstairs, you see an inferno coming from the kitchen, and then the house loses power. The experience is raw and definitely more powerful than a pamphlet, but at the end of the day it is a marketing campaign to not only change the batteries in your smoke detector every year but also buy ADT’s services. 


Walmart

The retailer is expanding its use of VR beyond employee training to the customer experience, making novel use of its 4,000+ physical stores. Walmart subsidiary Spatial& and DreamWorks created a VR experience based on the new “How to Train Your Dragon” movie that is now touring 40 Walmart store parking lots via 50-foot tractor trailers. In this way, Walmart is able to play host to exclusive VR experiences (featuring VR-powered chairs) and give the masses access to VR overnight—a technology that’s still too expensive for most and that Spatial& views as the future of retail marketing.

By working VR into stores, Walmart and other retailers can cut back on large displays and market products in interactive ways. For instance, shoppers might use a VR headset to put a tent together to test out camping gear or try stowing a stroller in an overhead airplane bin before buying. This is essentially “try before you buy” but inside the store itself. VR can even bring products to life, for example by enabling shoppers to virtually visit the vineyard that produces Walmart wine.


Royal Mail

Mailman vs. dog: It’s a classic TV trope that Royal Mail says prevents postal workers from taking anti-dog attack training seriously. In addition to the cartoon vision of the dog chasing the mailman, the group environment in which this training is traditionally held hurts its effectiveness, as trainees don’t want to be seen taking it seriously. Over the years, Royal Mail has tried videos, brochures, slogans and posters to reduce the number of dog attacks on its employees; now it’s turning to VR.

With around 150,000 postal workers delivering to some 30 million addresses, Royal Mail sees around 2,275 dog attacks per year. Injured employees are unable to finish their routes, which severely impacts customer experience. Looking for a way to isolate the training and eliminate the “banter culture” around dog attacks, Royal Mail began using VR: Now, trainees use smartphones inserted into headsets to experience potential dog attack scenarios, select different actions and receive feedback on their choices. The result: Many units haven’t reported a single dog attack since adopting the VR training system in November 2018. The training was also inexpensive for Royal Mail to pilot nationally.


Kellogg

Accenture Extended Reality, Qualcomm and Kellogg recently teamed up to pilot an eye-tracking VR headset for retail merchandising. The idea is to enable companies to do market research faster, cheaper and on a larger scale. Accenture developed the solution based on a Qualcomm VR reference design headset powered by the Qualcomm Snapdragon 845, using eye-tracking tech from Tobii, eye-tracking data analytics from Cognitive3D, and mixed reality software from InContext Solutions. By tracking where a user looks while moving through a full-scale virtual store, walking down virtual aisles, picking up products and placing items into his cart, retailers can determine the best way to stock shelves.

Brands spend a lot of time, money and effort figuring out optimal product placement but are usually limited in the data they’re able to collect (online surveys and in-home user tests can only go so far). Eye-tracking in VR provides richer and more accurate behavioral data than traditional testing. You can observe what users are looking at, for how long, in a realistic shopping scenario; and expand testing to more geographically dispersed participants (mobile VR). In fact, the VR eye-tracking solution has led to insights that directly contradicted some of Kellogg’s prior assumptions, resulting in an 18% increase in the brand’s sales during testing.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and early confirmed speakers, to come on the conference website.

Using AR/VR for Assurance in Insurance

I recently watched a Netflix documentary about the Fyre Festival. Two things from the story really stuck with me: 1) Festival owner Billy McFarland failed to get festival insurance; and 2) He couldn’t (or wouldn’t) listen to reason, as multiple people told him it would be impossible to pull off such an ambitious festival in under six months. At one point, someone tried to show Billy – using a map spread out on a table – that the island venue could not accommodate the number of festivalgoers and luxury villas that had already sold. While watching, I thought about Virtual Reality, not because it’s my job but because immersive technologies might have prevented the disaster that Fyre Festival turned out to be. What if those around Billy had used VR to snap him out of his delusions? Or what if Billy had tried to get festival insurance? Might an insurance agent have used VR to “preview” the festival and ultimately denied coverage? Perhaps that would have convinced Billy to cancel the event.

The insurance industry is, in fact, exploring virtual as well as augmented reality for a number of applications, including risk assessment, accident recreation, remote claims handling, and customer education. AR/VR may also be a solution to the insurance sector’s labor concerns and the answer to rising customer experience expectations.

State of the Insurance Industry

Insurance companies are not exempt from digital disruption or the need to create a more flexible and even virtual workforce for the digital age. As some manual and traditional industry tasks become automated, insurers will need to both recruit and upgrade their talent at a time when the labor market is incredibly tight. This is especially true for the tech, data science and actuarial labor pool (Deloitte). Furthermore, employees impacted by automation as well as Baby Boomers with irreplaceable institutional knowledge will need to be repurposed, which means retraining and leveraging cutting-edge technology to facilitate remote expert mentoring of new workers.

The traditional insurer-insured relationship can be boiled down to a monthly bill or claims submission when something goes wrong; but today’s insurance customers – many of whom are millennials – want more: More convenience and more personalization in the insurance buying and claims processes. Consumers want more control over their coverage through digital channels; they want insurers to leverage advanced sensors and analytics for tracking trends and results that will lower their payments (as in auto and homeowner’s insurance), and they want more innovative and hybrid types of coverage. These and other new expectations are clashing with the long-established culture of the insurance industry, pressuring companies to look for technology that appeals to a new generation of adults seeking insurance.

Applications for AR/VR in Insurance with Real-life Use Cases

Though the insurance sector is usually slow to adopt new technology, augmented and virtual reality are beginning to show up in the ways insurers market and provide their services. Insurance companies are exploring AR/VR as part of marketing strategies, for educating clients, to estimate damage, for employee training, and more:


Customer-facing Applications:

Insurance is a large and valuable market; and with new players offering fast, efficient, digital services, it’s also a fiercely competitive one. Traditional insurers are turning to technology – both the enabler and accelerator of digital transformation – to stay relevant to a changing customer base:

Explaining Insurance Plans

AR/VR can make the complex process of buying insurance easier by simulating real-life situations to showcase the value of various life, health and other coverage plans. Far more powerful than a brochure, website or salesperson, immersive simulations can drive home the need to save for retirement, simplify pension planning, etc.

Consumer Education / Risk Mitigation

In a similar vein, AR/VR can be used to warn clients about dangers and help them prevent the need to file a claim. By allowing insurers to demonstrate both common and exceptional risks in a virtual, risk-free environment, immersive simulations can improve the safety practices of different types of policyholders. For instance, doctors could use VR to practice on a new machine before using it with real patients, employees could learn to identify workplace risks, and homeowners could learn to prevent floods and fires.

Insurers are also toying with VR incident management and training programs that would give customers a fairer rate (ex. virtual driving tests for auto insurance). After successfully completing such a program, the customer would send her results to her insurance agent, verifying her enrollment and qualifying her for discounts (reduced premiums).

Marketing and Customer Engagement

With the ubiquity of AR-capable smartphones, companies today are increasingly incorporating AR into their brand apps and other marketing strategies. Insurers are no exception: AR experiences and VR simulations that create awareness about the importance of buying different types of insurance are part of new marketing and customer engagement plans. In general, insurers are looking to attract and retain new and existing customers by providing informational and entertaining content. This represents a significant move away from the usually distant or aloof position of an insurance company vis-à-vis its clients.

Customer Service

One way to improve the customer experience is to increase an organization’s operational efficiency; for instance, faster order picking in a warehouse leads to faster delivery and higher customer satisfaction. Another way is to focus on those times the customer directly interacts with the business. In insurance, these times are when a customer purchases a coverage plan, files a claim, or contacts support.

In addition to helping consumers understand insurance plans, AR/VR can provide real-time guidance to policyholders on how to fill out claim forms, resolve billing issues, and more. Some insurers are experimenting with virtual customer service (like a virtual support center) and enabling policyholders to interact with adjusters and begin documenting damage in real time through AR. Whether it’s through an individual’s mobile camera or, one day, smart glasses, adjusters can be “on the scene” with the policyholder, reviewing the damages, even taking exact measurements; allowing for faster and more accurate documentation of loss and faster case resolution.


Employee-facing or Operational Applications:

The game of insurance is about risk avoidance, the goal being to convert consumers and businesses into policyholders while driving down claims. AR/VR can be an effective tool for reaching these goals, not just through customer education but also by improving employee performance, making insurance workers shrewder and more efficient:

(Ongoing) Risk Assessment

AR/VR open a number of new capabilities for risk assessors to reduce cost and loss ratios. As mentioned above, auto insurers are considering administering virtual driving tests to determine whether someone is a safe driver before insuring them. VR is also being used to model risk: Assessors can navigate a building before it’s built, thereby improving insurance estimates, and better judge the safety of, say, a warehouse by simulating potential accidents within and evaluating the locations of exit doors and stairs. During risk inspections, assessors could use smart glasses to instantly document and record notes hands-free, and to connect with remote experts who might point out weak spots by augmenting the user’s field of view.

The Internet of Things (ex. smart automobiles, smart homes, etc.) is huge for insurance, enabling predictive analysis and preemptive actions that should reduce the number of high-frequency, low-impact claims. This paves the way for innovative insurance models, like plans that trigger based upon forecasts of loss as opposed to an actual event. Insurers might also use the wealth of data from IoT technologies along with statisticians to visualize and analyze complex data sets in a virtual setting.

Damage Estimation

Most early use cases of immersive tech in insurance come from the property and casualty side of the industry. This is because AR/VR present the ideal tool for safely recreating real-life disasters and estimating repair costs. Through the use of digital building plans and real-time sensor information overlaid on top of a damaged building, AR glasses-wearing agents can carefully review the damage on-site, doing things like seeing behind walls to determine the location of gas lines and other critical or hazardous objects.

Claims adjusters can overlay images of a building’s pre-loss condition for comparison, document damaged areas hands-free (useful for later VR accident simulations) and confer with remote experts. This makes it possible to more precisely estimate damage and process claims quicker, which, of course, pleases customers. AR glasses also allow for remote damage assessments, where an adjuster shares the view of a colleague at the incident site (wearing smart glasses) or looks through the customer’s mobile device to assess the damage without physically being there.

Remote Guidance and Employee Training

Accenture has found that 85% of insurance executives are interested in leveraging AR/VR solutions to bridge the physical and informational distance between newer and experienced employees and between agents and customers. This is especially key in the training of claims processors, who have one of the most important jobs in the industry (investigating claims). As studies show that people learn and retain information better when it’s presented in context over their real-world view, insurance employees should be able to train faster and more effectively “by doing” whether in a virtual environment or via AR-powered remote guidance on the job.

Indeed, leading insurers are finding AR/VR great for training agents at a lower cost, giving them virtual experience that raises their confidence and the accuracy of their work. Immersive training programs can also help insurance agencies prepare employees to work in specific sectors (ex. auto insurance reps learning about engine repair; home insurance reps learning about maintenance lifecycles), so they can make more informed decisions and offer policy-specific recommendations to clients. Remote technical experts might also provide a second pair of eyes, training agents in real time using AR.

Visual Claims and the Claims Process

Alluded to above is the potential for AR/VR to enhance and speed up claims processing by unlocking new methods for evaluating claims and detecting fraud in the field. With AR, multiple agents are no longer required to visit the claim site; just one employee equipped with smart glasses can go, while experts look on, inspecting damages and calculating losses remotely from the office. The time and money saved leads to greater employee efficiency and higher customer satisfaction. Customers themselves can serve in this role using an AR-enabled mobile device or perhaps smart glasses received upon purchasing a policy.

Policyholders are becoming fans of visual insurance claims, which promise more efficient claims processing and quicker payment. AR-powered video solutions can expedite claim settlements by enabling remote inspections at the First Notice of Loss and reducing adjustors’ time in the field (thereby lowering overhead). Customers can show a contact center agent the cause and extent of, say, a car crash, through a live video connection; giving the agent immediate, real-time access to information, including valuable pieces of temporary information like road conditions, vehicle position, skid marks, etc. This significantly shortens the claims process, eliminating not only the usual site visit but also any lengthy back-and-forth communication between agent and customer. The result: More accurate appraisals and faster resolution time.


Conclusion:

The transition from old industry methods to new ways of working with augmented reality will produce a more efficient and cost-effective insurance marketplace, transforming the ways agents interact with customers, enforce policies, and assess claims. Moreover, business and personal use of AR/VR technologies will open new categories of risk exposure leading to entirely new types of insurance.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 6th annual EWTS will be held September 17-19, 2019 in Dallas, TX. More details, including agenda and early confirmed speakers, to come on the conference website.

Embracing Digital Transformation: Real-life Use Cases in Energy & Utilities

A handful of utilities are piloting and, in a few cases, even deploying wearable technologies, but the greatest share of interest is and has been around augmented reality. There is an impressive, concerted effort in the utility space by researchers and vendors to thoroughly investigate the technology to see if it’s safe and a right fit for the industry. The Electric Power Research Institute (EPRI) has taken on a great deal of forward-thinking testing of AR, recognizing that standards will have to be determined if there’s to be widespread adoption.

EPRI

EPRI has been a part of several companies’ efforts to pilot AR in electric and utility operations, including Duke Energy and Con Edison. With Duke, EPRI deployed Atheer’s AiR platform to demonstrate how hands-free AR improves productivity and safety and shortens power outage recovery time. In addition to enhancing power restoration, another possibility is using AR to bridge the techno-generational divide. In other research, EPRI is studying the health and safety impacts of AR on workers, keeping an eye out for risks like eyestrain and reduced situational awareness; and sensor-equipped non-AR wearables that can help keep workers safe.


Duke Energy 

Duke’s emerging technologies unit has been a lead experimenter with augmented reality, trying out multiple tools like Atheer’s AiR platform with EPRI for inventory management and basic equipment maintenance, since 2014. Duke also sees potential for training and remote collaboration/troubleshooting in the field. Duke and EPRI worked with Verizon to simulate a storm response, equipping line workers with RealWear’s HMT-1 which uses GIS to provide critical information for repairing damaged infrastructure (ex. where a downed utility pole should be located). The solution could also send automatic equipment/parts orders to a utility warehouse, saving a lot of time.


Con Edison

EPRI teamed up with the New York utility to test various uses for AR, including substation switching, a task that can be dangerous, disrupt electricity and rack up costs, and substation inspections. Con Ed sees further potential in AR for improving worker safety, grid operations and maintenance.

AR glasses could help Con Ed employees in the field with complex tasks like locating buried transmission infrastructure and then making the necessary repairs. They could use smart glasses to access remote expertise. AR could also prevent errors by pointing workers to the right piece of equipment, showing relevant maintenance history and equipment specifications, etc.  


GE Renewable Energy

GE Renewable Energy successfully trialed Upskill’s Skylight platform for smart glasses to the tune of a 34% improvement in productivity in initial trials. It was, in fact, the first time the workers participating in the trial had ever use smart eyewear. Testing took place at a factory in Pensacola, Florida; where wind turbine assembly workers would have to stop what they were doing to check if they were installing parts correctly, referencing a manual or calling someone to make sure. Wearing glasses that projected digital checklists, diagrams, instructions, images and videos that one would otherwise view on a 2d screen directly in the user’s line of sight; employees were able to work more efficiently. A video released by GE makes a strong case for AR. It shows a side-by-side time-lapse comparison of a technician wiring a wind turbine control box the standard way and that same worker doing the wiring 34% faster guided by AR instructions in his field of view. How quickly hands-free AR glasses could tighten the skills gap!


Siemens

Siemens partnered with DAQRI to study the benefits of augmented reality in gas burner assembly training. The trial focused on different “personas” to see how an AR gas burner training app might affect the performance of different types of workers. At the Siemens Power Service Training Center in Berlin, four workers – two novices, one expert, and one worker who had last done an assembly a year before – participated in the pilot, using the app under realistic conditions. Testing revealed benefits to all the worker personas, reducing training time for new trainees and more experienced employees alike. In addition to accelerating learning time, Siemens believes AR could help avoid errors, streamline data collection, and speed up report generatio.


Scotland’s Fife College

In June 2017, students at Fife College in Scotland, “the next generation of offshore wind turbine technicians,” began learning in the school’s new Immersive Hybrid Reality (iHR) lab. The lab provides highly realistic XR training environments and scenarios that are difficult or impossible to simulate in real life. For instance, an actual offshore wind turbine would be over 325 feet above the water. In the lab, students are able to perform detailed inspections of the top of a virtual 7-megawatt offshore wind turbine – even under changing weather conditions, with the sound of the wind around them – while still seeing their own hands and holding real tools.


Toms River Municipal Utilities Authority

This year, the New Jersey utility piloted vGIS, a geographic information system (GIS) visualization platform by Meenim for visualizing overhead and underground infrastructure with Microsoft’s HoloLens headset. The solution essentially allows the wearer to “see” utility lines in real time (for ex. when digging up a street) and it supports both voice and gesture controls so the user has free use of his hands. Take the scenario of a downed telephone pole in the street; with vGIS, all field personnel are able to see the utilities under their feet, which is critical to planning and maintaining critical infrastructure.


We Energies, Milwaukee

For an industry-backed study including Marquette University, EPRI researchers recently visited a We Energies coal plant to observe workers using both monocular (RealWear) and binocular (HoloLens) AR headsets to perform different jobs. In multiple field tests, special attention was paid to the ergonomics of using AR in an industrial environment, with cameras and sensors monitoring users’ eyes, head, neck and shoulders. The question was whether the headsets would assist or distract/inhibit utility workers, who typically work 12 hours, walk several miles and examine 300 pieces of equipment in a day. We Energies workers seemed to prefer RealWear’s device to view checklists, while the research team is looking forward to when more meters, poles, etc. are connected to the IoT and AR becomes even more useful. More devices will be tested at other sites before the final report is released in 2019.


NYPA

I’ve saved New York Power Authority, the largest state-owned public utility in the country, for last due to its impressive digital roadmap. In December 2017, a utility collaborative on the use of wearables to monitor workers’ health was announced, NYPA included. But NYPA’s interest in emerging tech goes beyond wearables: The utility is aiming to be the first full-scale, all-digital utility with a digitally-enabled workforce. To that end, NYPA is installing sensors, smart meters and other data collecting devices in its customers’ buildings and facilities, creating digital twins of its large clients’ energy systems; the data analytics from these efforts should increase productivity and create new value-added services for NYPA’s customers (like helping them optimize use).

The company has created a smart operation center for its power plants, transmission lines, and substations; here, data like temperature, power loads, vibrations, pressure, emissions, moisture and strain is fed, with the goal of becoming proactive vs. reactive. “Digitizing everything” will allow NYPA to predict problems, reduce unplanned downtime, lower maintenance costs, and minimize operational risks. And how do you bring the workforce into this digital grid? Through Augmented Reality.

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-11, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Tickets now available at www.aweeu.com.

Empowering the Power Sector: The Use of Wearable and Immersive Tech in Utilities

Today’s power and utility companies are navigating a period of uncertainty: Political, environmental and social pressures are making it critical for the power sector to evolve the technology and business models by which it has traditionally operated. Radical policy changes such as regulation rollbacks and tax reforms, severe weather including historic floods, hurricanes and fires, a rapidly retiring workforce and changing electricity needs are testing utilities, compelling them to embrace digitalization… with caution.

And it’s not just in the U.S.; energy markets around the world are changing. As power grids become smarter, electricity gets cleaner, and consumers have more choices; utilities are rethinking how they generate and sell electricity, how they can make their operations more intelligent and give customers more control while safeguarding reliability, affordability and safety.


State of the Power Sector: Trends and pain points

 Changing Fuel Mix

Power generation today is increasingly diverse and decentralized. The rise of cheaper renewable and distributed energy sources has led to a kind of fork in the road: How do traditional energy providers strike a balance between maintaining and repairing aging infrastructure and investing in the future? The trends towards grid parity and liberalization of the energy market are clear: 50 gigawatts of coal-fired generation capacity were retired between 2012 and 2017, and BMI expects the capacity of renewables (wind, solar, etc.) to double by 2026. Some analysts are even saying the cost of delivering power via grid could surpass that of consumers producing and storing their own energy as early as 2022.


The New Energy Customer

Becoming more responsive to customer demands (and more resilient in the face of extreme weather) requires more than just strengthening poles and wires; it means stemming the tide of outgoing knowledge and training the next generation of utility workers to do their jobs better, faster and safer. It means new services and charging models that give customers more control over their energy consumption and even manage the surplus energy generated by consumers-turned-prosumers. A digital grid powered by automation and data intelligence will help synchronize the new complex network of fuel and power providers to deliver increased flexibility, cleaner energy, faster service, and lower costs to consumers.


Making Sense of the Data

 The large amount and variety of data collected as the grid gets more connected – data from smart equipment, customers (mobile notifications and smart meter data), and even drones (visual GPS, infrared LiDar, etc.) – is a challenge in and of itself. Processed and analyzed correctly, this information could help power companies stay on top of outages and damaged assets, anticipate demand and repairs, optimize scheduling, and improve customer service. But to translate all this data into actionable insight, utilities must invest in advanced data analytics along with the tools to feed information to change agents “on the ground.”


A Dying Breed

With half of their workforce expected to retire over the next several years, it’s critical for power and utility companies to be agile and adapt. The industry, however, is dealing with both decades-old infrastructure unfamiliar to younger engineers and newer smart grid technology alien to veteran workers; not to mention low-tech work tools and inadequate training methods like paper and pencil, slide decks and videos.

In addition to capturing outgoing expertise, utility organizations need to make new employees highly proficient quickly. A Department of Energy survey last year found that there are two types of utility workers in short supply: Those with firsthand knowledge of legacy systems and those with the training or qualifications to move up and replace the former. And though 74% of employees are ready to learn new skills, the number of different devices and generations of technology in a typical substation today – many lacking maintenance and repair records or even user manuals – complicates training.


Applications of XR and Wearables in Utilities

If you’re wondering how utilities are going to maintain revenue as the demand for non-renewable electricity continues to decline; you’re not alone. In order to make necessary investments and keep rates competitive given all the new players, utilities have to look beyond power generation for opportunities to reduce costs and increase productivity. One option they’re exploring are new and continually improving wearable and immersive technologies, especially augmented reality. In fact, despite heavy regulations, energy and utilities are one of the top three verticals buying Augmented Reality glasses (ABI Research).


Efficiency & Productivity

A quick response time in a power outage depends on technicians being able to quickly and accurately assess the damage and expedite repairs; but what if field workers lack the knowledge or experience to do so? This scenario is becoming more common as experienced utility workers retire before transmitting their specialized knowledge to their replacements and as the required skills for the job change and diversify (along with fuel supplies). Smart glasses present a solution in the form of on-demand data, step-by-step instructions, and over-the-shoulder remote coaching. If AR overlays fail – information like asset type, operating stats, maintenance history, etc. overlaid on a piece of equipment – see-what-I-see assistance from an office-based, expert worker would speed the job along while leaving both hands free for actual repairs. This has the added benefit of easing the impact of changing workforce demographics and enabling utilities to do more with less, as one expert in an office can remotely mentor an entire team of younger technicians.

AI-based data solutions and even virtual reality models could help predict failures to distribution equipment and other power quality issues, and furthermore dispatch the closest technician to the job and automatically order replacement parts. And with new data sources, existing utility systems of information like asset management, distribution management and geographic information systems will improve, as will the AR overlays and virtual SMEs guiding workers in the field. All of the above speeds up power restoration, improves customer service, and reduces operating and maintenance costs.


Safety

With employees spread out at multiple field locations, keeping the utility workforce safe is a challenge. Usually, engineers’ status and location are known only if they check in regularly. But body-worn wearables equipped with sensors that monitor location and risk status to workers, including hazards in their environment and key biometrics, allow real-time incident reporting and safety warnings. Real-life examples include smart badges that detect when the wearer has fallen from a pylon, smart clothing that can monitor heart rate and heat stress while climbing a transmission pole, and smart wristbands with built-in voltage detection.


Training

Smart glasses both stream and record, meaning institutional knowledge can be reserved in the form of first-person training videos recorded by seasoned workers wearing smart glasses. Additionally, remote guidance “sessions” can be recorded, serving in the moment to help younger workers on the job and later as training material to look back at. The same can be used to design VR or MR training simulations for incoming employees, as we now have the studies to back up the effectiveness of immersive experiences over traditional learning methods.

By wearing an AR display, utility workers in any job can have immediate access to the resources and real-time intelligence they need right in their field of view. This error-proofs the work of newer employees while simultaneously training them on the job. Moreover, the flexibility afforded by XR in training will be absolutely critical as the skills and knowledge required of the next-generation utility workforce change in sync with power generation itself.


With tremendous industry-wide support, especially from the Electric Power Research Institute (EPRI), the power sector is taking a long-term yet effective approach to not only piloting the latest in immersive wearable tech but also producing the studies – hard data – to ultimately facilitate industry-wide adoption. See my next post for use cases!

 

The Enterprise Wearable Technology Summit (EWTS) is an annual conference dedicated to the use of wearable technology for business and industrial applications. As the leading event for enterprise wearables, EWTS is where enterprises go to innovate with the latest in wearable tech, including heads-up displays, AR/VR/MR, body- and wrist-worn devices, and even exoskeletons. The 5th annual EWTS will be held October 9-11, 2018 at The Fairmont in Austin, TX. For more details, please visit the conference website.


Augmented World Expo (AWE), the world’s #1 AR+VR conference and expo, comes to Munich, Germany on October 18-19, 2018. CXOs, designers, developers, futurists, analysts, investors and top press will gather at the MOC Exhibition Center to learn, inspire, partner and experience first-hand the most exciting industry of our times. Tickets now available at www.aweeu.com.